ORIGINAL ARTICLE

January 2002

New Methodology For FPGA Based Designs Offers —
Significant Benefits over HDL Based Methods

Kent L. Gilson, Star Bridge Systems, Inc. * Gary DePalma, quickSTART Consulting

HeadStart FPGA Designer is a new methodology for FPGA based designs that
offers significant benefits in time to market, design performance, and design re-
use over HDL based methods. It captures designs graphically at a higher level
of abstraction (architecture level), which produces “chip in a day” levels of pro-
ductivity. Ilts high level of integration offers faster debugging and shorter time
to market. The high level capture enables the recursive synthesis process fo de-

sign extremely high performance designs that are area efficient. And design
reuse is raised to a new level with less effort than ever before.

Introduction

This paper will walk through a FPGA design that
was done using only the HeadStart™ FPGA De-
signer tool set. It is infended to give a feel for how
design can be addressed using HeadStart. The de-
sign described here has been used often to demon-
strate the effectiveness of HeadStart.

The authors are working on a long-term project to
model the visual cortex as a system. The human vis-
val recognition system is made up of many simpler
layers such as motion detection, shape recognition,
and edge detection. As part of this project, an
edge detector has been developed as a separate
demonstrable subsystem, to be in the final system.

A Real-time Video Edge detector

The application described here is a real time video
edge detector. There are two versions, a one-
dimensional (1-D) version that detects only vertical
edges and a second 2-D detector that detects edges
with any orientation. The 1-D version looks only at
five pixels in a single line and requires very little
memory. The 2-D version is much more memory in-
tensive. Since NTSC video is interlaced, that is sent
as two fields with the odd lines in one field and the
even lines in the other, the whole frame (both fields)
must be stored so that a five-by-five block of pixels
can be accessed by the special filter.

The edge detection module was thought to be a
good demonstration vehicle because it includes most
of the issues which need to be solved in a complete
design including interfacing to a previously built
(fixed interface) video conversion board, developing
the processing blocks, and tuning the coefficients in
the blocks to give the best results. However, the de-
sign itself is simple enough to be understood by eve-
ryone.

The video source chosen is a camcorder that has (U.S.)
standard NTSC video output. Because it uses video,
any NTSC video source could be substituted later. Re-
sults will later be fed into additional processors to simu-
late the entire pattern recognition process but for de-
velopment and demonstration purposes they could be
viewed on a standard TV or monitor with an NTSC in-
put.

Since NTSC video is an analog signal and the FPGA
does not support any analog processing, we need to
convert it to digital outside of the FPGA. The demo sys-
tem utilized an existing board with a Philips chipset that
converted NTSC video into an 8 bit wide YUV digital
pixel stream for processing. It also detects and presents
the horizontal and vertical sync signals. Finally, the
board also has a digital-YUV to NTSC converter on it
that could be used to display the resulting edge en-
hanced images on o standard TV monitor. The major
portions of the edge detector are shown in figure #1.

Video YUV
YOV n ——p
W Tnput > Mxx] (;I)I;It;llt Video
Data »
Sync Interface o Interface _S_&b
Position
Counter
Xy \4
Frame
Edge
P Ram Detector
@Dy
Sprite Y

Edge Detector Top Level Figure #1



Page 2

Today, this is more a research project than a develop-
ment project where the goal is to develop visual rec-
ognition algorithms. However, if the recognition system
is successful and commercial applications present them-
selves, it should be possible to move the design to a
CMOS ASIC with an on-board Imaging array.

General Approach

As far as the edge-detection is concerned, the design
was approached mostly top-down. However, the
edge-detector is a bottom-up block in the larger sys-
tem. We proceeded by building and testing each
edge-detection subsection with the yet undersigned
blocks stubbed out so testing could be done at the top
level. After each subsection was completed and work-
ing, we began work on one or more of the stubbed
blocks. The first blocks to be designed were the input
and output interfaces. These could be built with their
video lines connected together thus stubbing out the
rest of the design. Live video passed through from a
video cam to the monitor with no processing should
show no distortion or changes. By building the interface
first, we were able to test the ability to correctly input
and output the digital video in real time, properly ex-
tracting the end of row and frame signals (sync). Also
tested in this block was the extraction of odd/even
frame signal.

After building the interface blocks, the amount of sync
delay could be adjusted to ensure we were capturing
the video and not background of the retrace intervals.
In the final design, the sync delay would be handled
by a constant. However, in the early design stages,
we declared these constants as inputs. This way, when
we simulate, we can utilize the simulator’s slider object
that can change the value on an input in real time find-
ing the right constants to position the image in the cen-
ter of the monitor.

During simulation, the slider is attached to specific in-
terfaces through a user interface definition. It appears
on the screen looking like a scroll bar for a window.
The user can adjust the sliders to adjust the value of
the input (future constants) until the imaging was cor-
rect.

Then the input objects were replaced with constants
allowing the logic optimizers to eliminate unnecessary
hardware. It was interesting to note that even though
a common chipset was used for NTSC conversion, the
actual delays on input and output differed slightly for
best results. This was likely due to the pipelining done
inside the interface circuits.

NTSC video is sent as two sequential fields. The first
field contains the odd lines of the video and the even
lines are sent in the second field. The field rate is ap-
proximately 60 Hz where the frame rate is half that.
This is called interlaced video and each field holds
only half the resolution in the vertical direction. To do

2-D edge detection, we need to “de-interlace” the video by
storing it in an array. The interface uses the horizontal and
vertical sync to count the x and y directions and use that as
an address to store and extract the video from the RAM.
These x and y counters are also used as an address when
generation output sync.

The Sprite Generator

With the ability to get real time video in and out of the chip,
we now focused on the method of simultaneously displaying
both the incoming video and the edge enhanced view that
would be generated by the edge detector. We chose a
sprite generator as the best method. A sprite allows us to
display the incoming video but replace it inside of the sprite
with the edge-enhanced video. For simplicity, we chose a
rectangular sprite that could be moved horizontally and ver-
tically on the screen. This way, we can view the incoming
video or the edge enhanced video at any point on the
screen.

We already had the x and y positional counters in the inter-
face block and all that is needed for the sprite generator
was to compare the x and y position with the size and coor-
dinates of the sprite and decide whether or not the current
position was inside or outside the sprite. A video rate multi-
plexer switches the video output between the incoming video
and the edge-detected video. The sprite generator was
built and tested with the edge detector stubbed out by using
a constant intensity and color as the second input to the mul-
tiplexer.

The Edge Detector — Real Reuse in Action

The edge detector for the 1-D unit was chosen as a 5-pole
finite impulse response (FIR) filter. The Figure #2 shows the
block diagram of a 5-pole FIR filter.

Data In

Clock

A 5-pole FIR filter

Figure #2




ORIGINAL ARTICLE

A FIR is a good example of a block that could be reused
and should be put in the user’s library. We would like to
generalize the FIR filter in order to increase its valve as
a reusable object. The first and most obvious generaliza-
tion is for the FIR to accept different data types (float vs.
integer, size) to improve its reusability. With HeadStart,
this is the natural design method. It is just a simple case
of assigning variable width elements (variant data type)
for the input. The library elements are defined with vari-
ant types as well. We just wire them up on the graphical
capture tool. When the block is used and is connected to
an actual data source, in this case the video stream, the
blocks will automatically be sized (polymorphed) to the
correct size. There is essentially no additional work re-
quired to build a data-size polymorphic FIR.

In addition to the variable data size, the constants should
have flexible size. It is likely that the best filter will re-
quire different sized constants (or a lot of leading zeros)
if a fixed-point implementation is being built. Again, we
define the inputs as variant data type and the multipliers
and will adders will polymorph to the correct size.

However, if the data is n bits and the constant is m bits,
then the output of the multiplier will be (n+m) bits
requiring the adders to be that size plus a small guard
band. However, it is most likely that the output of the fil-
ter should be the same type and size as the input. In-
stead of adding up all of these wide words only to throw
half the bits away, we can cast the multiplier output with
or without rounding. There is a cast entity in the library
which takes two inputs, one is the data and the other is
connected to a signal only to pick up the data type that
you want to cast the result to. We can hook this type line
to the data line casting the output of the multiplier back
down to the same size as the input.

Data-type polymorphism can be implemented in an HDL
to encourage reuse but this is not without significant pain.
First, you must define the data as an array with a vari-
able width. Next is the question of where do you define
the width, as a parameter or as a constant defined in an
included file. To pass it in as a parameter, the next
layer of hierarchy up must be modified to include or cal-
culate the size. To use an include file, you have to create
one. Usually you want to have a single parameter file
for the project. This can cause name collisions if you
have implemented more than one filter or if another de-
signer has used the same name in a different design.
Finally you must document the parameter and its use.
The extra time needed to design for reuse using an HDL
methodology goes against the designer’s time to market
pressures. For this reason, the steps needed to design for
reuse are often skipped. With an HDL methodology,
reuse costs and your only choice is fo pay now or pay
later.

HeadStart, on the other hand, both lowers the cost of
reuse while it increases the value.

Data-rate Polymorphism — A Step Up
in Reusability

Besides generalizing the design for data types, the de-
sign should be capable of adapting to the speed re-
quirements. A filter can be used in many applications. An
electro-mechanical application such as a switch de-
bounce circuit could have data rates below 100Hz. An
audio filter may only need fo run at 8kHz and our video
filter runs over three orders of magnitude faster in the
20 MHz range. But the algorithm of a filter remains con-
stant. But reuse of a design over a wide range of data-
rates is usually not efficient with an HDL methodology.

When you implement multiplication in an HDL, you have
two choices, type A¥B and hope for the best or use the
A*B only for the simulator and import a library element.
Most of the library elements are designed for speed and
to implement the slower speed applications, you would
probably want to share the resource. This requires the
designer to modify the RTL fo share the resource. There
are additional tools today that can help in this area but
not at no cost.

HeadStart capture is truly implementation independent.
The outputs can be annotated with the required data
rate and then the rendering engines can choose the best
implementations. Sharing resources is one way but since
the multiply library is also based on algorithmic capture,
the multiplier can be re-implemented to better fit the
data rate by implementing a slow, very small multiplier.
Actually, many slow multipliers can actually be more
area efficient than a fast one being shared by the vari-
ous stages in the filter. Additionally, using several small
multipliers eliminates both the extra circuitry and the de-
sign work needed to share the resources.

What is happening here is called data-rate polymor-
phism. By capturing the algorithm (not the implementa-
tion) with all of its parallelism intact, HeadStart can build
very fast circuits even in an FPGA. However it also can
reduce the area by eliminating the parallel operations
that are not needed to meet the data rate requirements.
It is “easy” to convert a parallel design into a serial de-
sign without additional information. However, it is nearly
impossible to take a specific implementation with serial
operations and generalize it to be faster using more
parallel operations.

Using Recursion to Add Another

Dimension to Reusability

Programmers have used recursion for years to simplify
and generalize a programming problem. For example,
recursion can be used to design a variable (infinite} pre-
cision math library. Why not use recursion for hardware
design? Seems reasonable but today’s HDLs are not re-

Page 3




Page 4

instantiate or call itself. HeadStart capture and synthesis is
recursive and recursion is a major technology used to cre-
ate the data-rate polymorphism. For example, from an
algorithmic level, an n-bit adder is the same as an (n-1)-bit
adder and a 1 bit adder with the carry passed across.
This is the way we define an adder, recursively.

But recursion needs a place to stop. With a concept bor-
rowed from operator overloading used in programming
languages, we can have several definitions of an adder as
long as the input types are different. During synthesis, the
actual choice of which adder is made by the data types
attached. Thus a variant input adder recursively reduces
the word size until they match the input sizes of a fixed ad-
der. For integers, we only need to define a 1-bit adder
and a variant adder to get all possible adders. Remember
that this is algorithm level capture so the implementation is
not being fixed as it would be with an HDL.

But recursion can be used in another way. In designing a
system, | might need to have a filter with a different num-
ber of poles. Without recursion , | would have to define
each filter separately or add a FOR loop to instantiate the
filter and go back to the problems of documentation and
variable collisions mentioned above. With HeadStart, we
defined the FIR filter recursively based on the number of
inputs

We started by looking at the design of an n-pole filter as
shown earlier. It is clear that in this 5 pole filter, there is a
four-pole filter plus an additional delay, adder and multi-
ply block. To define recursion on the n-pole filter, we de-
fine a two pole filter ( Figure #3) which accepts two con-
stants, both scalars of any data width. It used the same
data-size polymorphic elements as before. However we
added an additional output which is the last stage of the
delay chain so that we could add additional stages.

Figure #3
Datafln
Clock
v
Clk in
DELAY
out
Clk in
DELAY
C, out
Cl
. A
Shift Out Data Out

A 2-pole FIR filter

In the recursive filter, we will supply it with a vector of
constants. The number of scalars in the vector will de-
termine the number of poles. Next we employ a library
element called a data-exposer. A data-exposer ac-
cepts a more complex data type and splits it intfo two
simpler components. For our vector, it strips the first ele-
ment of the vector off and outputs it as a constant. It
also outputs a vector with one less component. [If the
input to the data-exoposer is a two element vector,
both outputs will be scalar. 1t is a simple matter to de-
sign an n-pole filter recursively as shown (Figure #4).

Data

v

Data in
Clk
Clk
Cv N-Pole Filter

Cv CsA
Shift out Data out

: l
Clk in

DELAY
out

in

A 4

Shift|out Data| out

Recursive N-Pole FIR Filter

Figure # 4

Finally, it would be nice if the filter could be defined to
have a single input (vector) for the constants and not
have to require the user to input one constant as a sca-
lar and the others in a vector. To solve this we add one
more layer of recursion for the top level. This accepts
all n constants as a vector and splits one scalar off. It
then instantiates the first n-pole filter with two constant
inputs, a scalar and a vector. This top level FIR filter is
shown in Figure #5.

Even though all three blocks have the same name in the
library (FIR) the recursive synthesis process can easily
differentiates which to use because they all have num-
ber of inputs or different input types. With this type of
recursion we can capture and test our design without
having to make a decision on the number of poles in
each filter.




Page 5

Detain

G/ NPdeFilter

| @

Sifta Ditaat

Shift] ot Detaf out

\/
TopLevd FIR Filter

Figure # 5

\{

About the authors

Kent L. Gilson is Chairman and Chief Technology Officer of Midvale, Utah
based Star Bridge Systems, Inc. Star Bridge’s high-performance; reconfigur-
able Hypercomputers are sold in the capability computing market. The com-
pany’s HeadStart™ and Alpha Series Emulator™ products for system-level
design, synthesis and verification will be introduced into the EDA market in
early 2002. Kent is a leading proponent of reconfigurable computing and
has won national awards from Xilinx Corporation and the National Associa-
tion of Music Merchants for his reconfigurable computing products. Kent can
be reached at Star Bridge Systems 801-984-4444 or at
SBS@starbridgesystems.com.

Gary DePalma has more than 20 years experience in the electronics industry.
He has held engineering and management positions at companies that include
Bell Labs, Silicon Compilers, and Intel. He is currently a principal at quick-
START Consulting where he works with new ventures to help develop innova-
tive products. Gary can be reached at garydep@ieee.org.




