Rainer Waser (Ed.)

Nanoelectronics and Information Technology

Perovskite (100) Si(110) Advanced Electronic Materials and Novel Devices

The Authors:

J. Appenzeller, IBM Research, USA P. Atkins, Oxford University, Great Britain P. K. Bachmann, Philips Research Laboratories, Germany A. Baumann, Research Center Jülich, Germany H. Bechtel, Philips Research Laboratories, Germany H.R. Beratan, Raytheon Systems, USA T. Bieringer, Bayer AG, Germany G.K. Binnig, IBM Research, Switzerland U. Böttger, RWTH Aachen University, Germany W. Brockherde, Fraunhofer Institute IMS, Duisburg, Germany D. E. Bürgler, Research Center Jülich, Germany C. Buchal, Research Center Jülich, Germany M. De Herrera, Motorola Semiconductor, USA M. Despont, IBM Research, Switzerland A. Dietzel, IBM Storage Europe, Germany M. Dolle, Infineon Technologies, Germany U. Dürig, IBM Research, Switzerland H. Dürr, BESSY, Berlin, Germany P. Ebert, Research Center Jülich, Germany P. Ehrhart, Research Center Jülich, Germany S. R. Forrest, Princeton University, USA A. Förster. Research Center Jülich. Germanv P. Fromherz, Max Planck Institute of Biochemistry, Germany P. B. Griffin, Stanford University, USA P. A. Grünberg, Research Center Jülich, Germany S. Hoffmann-Eifert, Research Center Jülich, Germany B. J. Hosticka, Fraunhofer Institute IMS, Duisburg, Germany W. Hönlein, Infineon Technologies, Germany M. Imlau, University of Osnabrück, Germany H. Ishiwara, Tokyo Institute of Technology, Japan R. Jeremias, Fraunhofer Institute IMS, Germany E. Joselevich, Weizman Institute, Israel St. Jung, Infineon Technologies, Germany U. B. Kaupp, Research Center Jülich, Germany J. Kent, Elo TouchSystems, California, USA A. Kingon, North Carolina State University, USA N. Klein, Research Center Jülich, Germany C.-D. Kohl, Justus Liebig University Giessen, Germany H. Kohlstedt, Research Center Jülich, Germany M. A. Lantz, IBM Research, Switzerland H. Lüth, Research Center Jülich, Germany K. Machida, NTT Microsystem Integration Laboratories, Japan K. Maezawa, NagoyaUniversity, Japan S. Mantl, Research Center Jülich, Germany M. Mayor, Research Center Karlsruhe, Germany S. McClatchie, LAM Research, USA J. Moers, Research Center Jülich, Germany W. Mokwa, RWTH AachenUniversity, Germany P. Muralt, EPFL, Switzerland S. G. Odoulov, National Academy of Sciences, Russia S. Okazaki, ASET Atsugi Research Center, Japan M. Pfeiffer, TU Dresden, Germany D. Richter, Research Center Jülich, Germany A. Roelofs, RWTH Aachen University, Germany K. Röll, Kassel University, Germany H. E. Rothuizen, IBM Research, Switzerland St. Schneider, Research Center Jülich, Germany H. Schroeder, Research Center Jülich, Germany O. H. Seeck, DESY, Hamburg, Germany M. Siegel, University of Karlsruhe, Germany J. M. Slaughter, Motorola Laboratories, USA G. Spekowius, Philips Research Laboratories, Germany S. Summerfelt, Texas Instruments, USA K. Szot, Research Center Jülich, Germany D. Theis, Infineon Technologies, Munich, Germany S. Trolier-McKinstry, Pennsylvania StateUniversity, USA K. Uchida, Toshiba Corporation, Japan A. Ustinov, University Erlangen-Nuremberg, Germany P. Vettiger, IBM Research, Switzerland R. Waser, Research Center Jülich & RWTH Aachen, Germany H. Weber, Research Center Karlsruhe, Germany Th. Woike, University of Cologne, Germany S.-T. Wu, University of Central Florida, USA M. Wuttig, RWTH Aachen University, Germany

The Editor:

Rainer Waser is Professor at the faculty for Electrical Engineering and Information Technology of the RWTH Aachen University and director at the Institute of Solid State Research (IFF) at the HGF Research Center Jülich, Germany. In 1984, he received his PhD in physical chemistry at the University of Darmstadt, and worked at the Philips Research Laboratory, Aachen, until he was appointed professor in 1992. His research group is focused on fundamental aspects of electronic materials and on such integrated devices as non-volatile memories, specifically ferroelectric memories, logic devices, sensors and actuators. Throughout, he has been collaborating with major semiconductor industries in Europe, the US, and the Far East. He has organized international conferences, published about 200 technical papers and holds ten patents. Since 2002, he has been the coordinator of the research program Nanoelectronic Systems within the German National Research Centers (Helmholtz-Gemeinschaft).

The Book:

Providing an introduction to electronic materials and deviceconcepts for the major areas of current and future information technology, the value of this book lies in its focus on the underlying principles. Illustrated by contemporary examples, these basic principles will hold, despite the rapid developments in this field, especially emphasizing nanoelectronics. There is hardly any field where the links between basic science and application are tighter than in nanoelectronics & information technology. As an example, the design of resonant tunneling transistors, single electrondevices or molecular electronic structures is simply inconceivable without delving deep into quantum mechanics. This textbook is primarily aimed at students of physics, electrical engineering and information technology, as well as material science in their 3rd year and higher. It is equally of interest to professionals wanting a broader overview of this hot topic.

E. W. A. Young, ISMT-Philips Semiconductors, Belgium R. Zorn, Research Center Jülich, Germany

Preface	7
General Introduction	11
1 Properties of Information	13
2 Mathematical Definition of Information	16
3 Processing of Information	18
4 Areas of Information Technology	22

I Fundamentals	25
1 Interdisciplinarity	27
2 Prerequisites	27
3 Material Properties and Material Classes	29
1 Dielectrics	31
S. Hoffmann-Eifert, Research Center Jülich, Germany	
1 Introduction	33
2 Polarisation of Condensed Matter	34
3 Frequency Dependence of the Polarisation Mechanisms	36
4 Polarisation Waves in Ionic Crystals	42
5 Optical Properties of Dielectrics	52
6 Closing Remarks	57
2 Ferroelectrics	59
D. Richter, Research Center Jülich, Germany / S. Trolier-McKinstry, Pennsylvania State University, USA	
1 Introduction	61
2 Spontaneous Polarization	62
3 Theory of the Ferroelectric Phase Transition	65
4 Ferroelectric Materials	69
5 Ferroelectric Domains	71
6 Summary	77
2. Electronic Duon ortics and Quantum Effects	70
5 Electronic Properties and Quantum Effects H Lith Research Center Wilch, Germany	79
1. Luta, Research Center Judon, Germany	01
1 Introduction 2 Electronic Department of Constals	81
2 Electronic Properties of Crystals 2 Discinction Electronic Transport The Electrical Desistance	81
5 Dissipative Electronic Transport: The Electrical Resistance	92
4 Interfaces and Heterostructures	95
5 Low-Dimensional Structures	97
o Superconductivity	102
/ Conclusions	106

Introduction Special Anisotropies at Surfaces and Interfaces Interlayer Exchange Coupling (IEC) Giant Magnetoresistance (GMR) Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	111 112 116 120 123 125 127
Introduction Special Anisotropies at Surfaces and Interfaces Interlayer Exchange Coupling (IEC) Giant Magnetoresistance (GMR) Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	111 112 116 120 123 125 127
Special Anisotropies at Surfaces and Interfaces Interlayer Exchange Coupling (IEC) Giant Magnetoresistance (GMR) Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	112 116 120 123 125 127
Interlayer Exchange Coupling (IEC) Giant Magnetoresistance (GMR) Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	116 120 123 125 127
Giant Magnetoresistance (GMR) Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	120 123 125 127
Tunnel Magnetoresistance (TMR) Current-Induced Magnetic Switching Summary	123 125 127
Current-Induced Magnetic Switching Summary	125 127
Summary	127
Organic Molecules – Electronic Structures, Properties, and Reactions . Atkins, Oxford University, Great Britain / R.Waser, Research Center Jülich & RWTH Aachen, Germany	129
Introduction	131
Hydrocarbons	131
Electronic Structure of π -Conjugated Systems	133
Functional Groups and Structures of Molecules	137
Basic Principles of Chemical Synthesis	140
Summary	145
Leurons – The Molecular Basis of their Electrical Excitability . B. Kaupp, Research Center Jülich, Germany / A. Baumann, Research Center Jülich, Germany Architecture and Basic Signaling Capabilities of a Neuron	147
Membrane Potential	152
What Determines the Resting Membrane Potential?	153
How is the Action Potential Generated?	156
Recording Electrical Signals from Neurons	157
Signal Propagation along the Axon	160
How do Action Potentials Evoke Neurotransmitter Release?	161
Molecular Structure and Function of Ion Channels	162
Biochemical Aspects of Learning and Memory	165
Circuit and System Design	167
	1.00
MOSEET	169
MOSELI CMOS Circuita	109
Digital Circuits	170
Logic Arrays	173
Circuit Simulation	177
Microprocessor	1//
Digital Signal Processors	1/9
Performance and Architectures	103
	Prganic Molecules – Electronic Structures, Properties, and Reactions Atkins, Oxford University, Great Britain / R.Waser, Research Center Jülich & RWTH Aachen, Germany Introduction Hydrocarbons Electronic Structure of π-Conjugated Systems Functional Groups and Structures of Molecules Basic Principles of Chemical Synthesis Summary reurons – The Molecular Basis of their Electrical Excitability B. Katpp, Research Center Jülich, Germany / A. Baumann, Research Center Jülich, Germany Architecture and Basic Signaling Capabilities of a Neuron Membrane Potential What Determines the Resting Membrane Potential? How is the Action Potential Generated? Recording Electrical Signals from Neurons Signal Propagation along the Axon How do Action Potential Evoke Neurotransmitter Release? Molecular Structure and Function of Ion Channels Biochemical Aspects of Learning and Memory Chile. Infineon Technologies, Germany Introduction MOSFFT CMOS Circuits Digital Circuits Logic Arrays Circuit Simulation Microprocessor Digital Signal Processors Performance and Architec

1 Basic Concepts of Technology 191 2 CMOS Technology 193 3 Nanotechnological Approaches 194 4 Analysis Methods 197 8 Film Deposition Methods 197 1 Introduction 201 2 Fundamentals of Film Deposition 202 3 Nanotechnological Approaches 201 4 Chemical Deposition Methods 205 4 Chemical Deposition Methods 205 5 Outstand Research Center, Japan / J. Moers, Research Center Jülich, Germany 218 5 Manuary 228 5 Optical Linbography 226 1 Survey 226 2 Optical Linbography 226 3 Extreme Ultraviolet Linbography 226 4 X-Ray Linbography 226 5 Hetcrion Beam Linbography 226 6 Ion Beam Linbography 239 7 Photoresist 231 8 Alignment of Several Mask Layers 241 10 Canchroin	Π	Technology and Analysis	189
2 CMOS Technology 193 3 Nanotechnological Approaches 194 4 Analysis Methods 197 8 Film Deposition Methods 197 8 Film Deposition Methods 201 2 Fundamentals of Film Deposition 201 2 Fundamentals of Film Deposition 202 3 Physical Deposition Methods 202 4 Charaki, ASET Ataugi Research Center, Japan / J. Moers, Research Center, Jülich, Germany 218 5 Summary 218 5 Summary 218 5 Optical Lithography 226 5 Optical Lithography 226 5 Optical Lithography 226 5 Deposition Methods 210 5 Streme Ultraviolet Lithography 226 6 In Beam Lithography 226 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanotimprint Lithography 244 10 Conclusions 249 5 Schwater		1 Basic Concepts of Technology	191
3 Nanotechnological Approaches 194 4 Analysis Methods 197 8 Film Deposition Methods 199 P. Elechar, Research Conter Jülich, Germany 1 1 Introduction 201 2 Fundamentals of Film Deposition 202 3 Nummer Stream 203 4 Chemical Deposition Methods 204 5 Olizardi, ABT Atage Research Center, Japan / J. Moers, Research Center Jülich, Germany 203 7 Lithography 225 2 Optical Lithography 226 1 Survey 225 2 Optical Lithography 226 5 Extreme Ultraviolet Lithography 226 6 Ion Beam Lithography 226 6 Ion Beam Lithography 226 7 Photoresist 231 8 Alignment of Several Mask Layers 233 9 Nanoimprint Lithography 246 1 Introduction 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 8 Schendelar, Research Center Jülick, Germany / S. McClatchin, LM Research, USA 241 1 Introduction 251 2 Chemical Mechanical Polishing 241 2 Lich Techniques 251		2 CMOS Technology	193
4 Analysis Methods 197 8 Film Deposition Methods 199 P. Electure, Research Center Jälich, Germany 1 1 Introduction 201 2. Fundamentals of Film Deposition 202 3. Physical Deposition Methods 205 4. Chemical Deposition Methods 210 5. Summary 218 9 Lithography 226 2. Optical Lithography 226 3. Extreme Utraviolet Lithography 226 5. Charaki, ASET Atsugi Research Center, Japan / J. Morrs, Research Center Jälich, Germany 211 5. Obtacki, ASET Atsugi Research Center, Japan / J. Morrs, Research Center Jälich, Germany 223 5. Obtacki, ASET Atsugi Research Center, Japan / J. Morrs, Research Center Jälich, Germany 224 4. X-Ray Lithography 226 5. Electron Beam Lithography 226 6. Ion Beam Lithography 236 7. Photoresist 231 8. Alignment of Several Mask Layers 243 9. Nanoimprint Lithography 244 10. Conclusions 241 11. Introduction 251 2. GM- Chemical Mechanical Polishing 242 3. CMP - Chemical Mechanical Polishing 243 4. Analysis by Diffraction and Fluorescence Methods 273 7. M. Schudick, IEAM Mitcheds		3 Nanotechnological Approaches	194
8 Film Deposition Methods 199 P. Ebrhart, Research Center Jülich, Germany 201 1 Introduction 202 3 Physical Deposition Methods 205 4 Chemical Deposition Methods 206 5 Summary 218 9 Lithography 223 5 Obrawik, ASET Atsugt Research Center, Japan / J. Mores, Research Center Jülich, Germany 23 5 Obrawik, ASET Atsugt Research Center, Japan / J. Mores, Research Center Jülich, Germany 23 5 Obrawik, ASET Atsugt Research Center, Japan / J. Mores, Research Center Jülich, Germany 24 7 Dittography 226 9 Dittography 236 6 Introduction Intography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 246 10 Conclusions 241 11 Introduction 251 25 Sevenider Center Jülich, Germany / S. McClastrite, LAM Research, USA 241 11 Introduction 251 <		4 Analysis Methods	197
8 Film Deposition Methods 99 9 F. Bickard, Research Clearer, Bilde, Germany 201 1 Introduction 201 2 Projectal Deposition Methods 202 3 Projectal Deposition Methods 201 5 Summary 218 7 Lithography 223 5 Obranki, ASET Ausgel Research Center, Japan / J. Moers, Research Center Jülich, Germany 223 5 Obracki, ASET Ausgel Research Center, Japan / J. Moers, Research Center Jülich, Germany 224 5 Optical Lithography 225 2 Optical Lithography 226 5 Electron Beam Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 246 11 Introduction 251 2 Cher – Chemical Mechanical Polishing 241 11 Mandysis Methods 246 <td></td> <td></td> <td></td>			
1 Introduction 201 2 Fundamentals of Film Deposition 202 3 Physical Deposition Methods 205 4 Chemical Deposition Methods 210 5 Summary 218 9 Lithography 225 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 226 4 X-Ray Lithography 226 5 Electron Beam Lithography 226 6 Ion Beam Lithography 236 6 Ion Beam Lithography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 246 10 Octelusions 246 10 Conclusions 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 246 11 Analysis by Diffraction and Fluorescence Methods 276 2 X-ray Analysis Methods 276 3 CMP - Chemical Mechanical Polishing <t< td=""><td></td><td>8 Film Deposition Methods P. Ehrhart, Research Center Jülich, Germany</td><td>199</td></t<>		8 Film Deposition Methods P. Ehrhart, Research Center Jülich, Germany	199
1 Introduction 201 2 Findamentals of Film Deposition 202 3 Physical Deposition Methods 205 4 Chemical Deposition Methods 210 5 Summary 218 9 Lithography 223 5 Obtackit, ASET Atsage Research Center, Japan / J. Moers, Research Center Jülich, Germany 223 5 Obtackit, ASET Atsage Research Center, Japan / J. Moers, Research Center Jülich, Germany 224 4 X-Ray Lithography 226 2 Optical Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 241 10 Conclusions 241 11 Antroduction 251 2 Exch Techniques 251 3 CMP - Chemical Mechanical Polishing 249 5 Schneider, Research Center Jülich, Germany / S. McCla		1 Introduction	201
1 Physical Deposition Methods 205 2 Chemical Deposition Methods 210 5 Summary 218 9 Lithography 223 5 Obtacki, ASET Anugl Research Center, Japan / J. Moers, Research Center Jülich, Germany 225 2 Optical Lithography 226 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 226 4 X-Ray Lithography 226 5 Electron Beam Lithography 236 6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Conclusions 251 2 Christian and Fluorescence Methods 273 0. I. Seeck. DEST, Hamburg. Germany 273 1 Introduction 275 2 X-ray Analysis Methods 244 4 Surface Sensitive Analytical Methods 276 2 Electr		2 Fundamentals of Film Deposition	201
1 Chemical Deposition Methods 210 5 Summary 218 9 Lithography 223 8 Okcaski, ASET Atsugi Research Center, Japan / J. Moers, Research Center Jülich, Germany 223 9 Lithography 225 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 226 4 X-Ray Lithography 226 5 Electron Beam Lithography 226 6 Ion Beam Lithography 236 7 Photoresist 241 8 Aligument of Several Mask Layers 243 9 Nanoimprint Lithography 236 10 Conclusions 246 10 Conclusions 246 10 Introduction 251 2 Etch Techniques Etching and Chemical Mechanical Polishing 249 8. Sobrider, Research Center Jülich, Germany / S. McClatchite, LAM Research, USA 211 Introduction 251 2 Techniques 251 251 251 251 11 Introduction 275		3 Physical Deposition Methods	202
5 Summary 218 9 Lithography 223 8 Obtacki, ASET Atsugi Research Center, Japan / J. Moers, Research Center Jülich, Germany 223 1 Survey 225 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 226 4 X-Ray Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 236 10 Conclusions 246 10 Conclusions 246 10 Conclusions 247 1 Introduction 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 249 0 I. Introduction 251 2 The Chemical Mechanical Polishing 273 0 H. Seek, DESY, Hamburg, Germany 276 1 Introduction 276		4 Chemical Deposition Methods	210
9 Lithography 223 8. Okazaki, ASET Atsugi Research Center, Japan / J. Moers, Research Center Jülich, Germany 225 1 Survey 225 2 Optical Lithography 226 3. Extreme Ultraviolet Lithography 236 4. X-Ray Lithography 236 5. Electron Beam Lithography 236 6. Ion Beam Lithography 239 7. Photoresist 241 8. Alignment of Several Mask Layers 243 9. Nanoimprint Lithography 246 10. Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 s. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1. Introduction 251 2. Etch Techniques 251 3. CMP - Chemical Mechanical Polishing 266 11. Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 276 1. Scanning Probe Techniques 276 2. Some Other Methods 295 3. Some Other Methods 291 3. Some Other Methods 291 3. The Scanning Funneling Microscope 300		5 Summary	218
S. Okaski, ASET Assig Research Center, Japan / J. Moers, Research Center Jülich, Germany 225 S. Okaski, ASET Assig Research Center, Japan / J. Moers, Research Center Jülich, Germany 225 1 Survey 225 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 236 4 XRay Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 236 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 11 Introduction 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 249 11 Analysis by Diffraction and Fluorescence Methods 276 2 X-ray Analysis Methods 276 3 </td <td></td> <td>0 Lithography</td> <td>222</td>		0 Lithography	222
1 Survey 225 2 Optical Lithography 226 3 Extreme Ultraviolet Lithography 236 4 X-Ray Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 239 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 244 10 Conclusions 246 11 Analysis by Diffraction and Fluorescence Methods 251 2 CMP – Chemical Mechanical Polishing 251 3 CMP – Chemical Mechanical Polishing 273 0 H. Seeck, DEST, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 284 4 Surface Sensitive Analytical Methods 295 5 Some Other Methods 295 5 Some Other Methods 297 9 P. Ebern, Research Center Jülich, Germany / K. Scot,		S. Okazaki, ASET Atsugi Research Center, Japan / J. Moers, Research Center Jülich, Germany	223
1 Onitical Lithography 226 2 Optical Lithography 234 4 X-Ray Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 <i>S. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA</i> 251 2 CMP – Chemical Mechanical Polishing 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 274 1 Introduction 275 2 K-ray Analysis Methods 286 3 Electron Analysis Methods 291 5 Some Other Methods 295 7 P. Ebert, Research Center Jülich, Germany / K. Scot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1 Introduction 297 2 The Scanning Probe Techniques 297 3 The Scanning Core Microscope 300		1 Survey	225
a Extreme Ultraviolet Lithography 234 4 X-Ray Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 24 Etch Techniques 251 2 Etch Techniques 251 2 Etch Techniques 251 2 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0 H. Seeck, DESY, Hamburg, Germany 276 1 Introduction 275 2 X-ray Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 7 P. Ebert, Research Center Jülich, Germany / K. Scot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1		2 Ontical Lithography	225
4 X-Ray Lithography 236 5 Electron Beam Lithography 236 6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing <i>st. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA</i> 251 1 Introduction 251 2 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 275 2. X-ray Analysis Methods 276 1 Introduction 275 2. X-ray Analysis Methods 296 5 Some Other Methods 291 295 7 P. Ebert, Research Center Jülich, Germany / K. Scot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 297 2 Some Other Methods 297 7 P. Ebert, Research		3 Extreme Ultraviolet Lithography	234
1 The Seck DESY, Hamburg, Germany 236 1 Introduction 237 1 Anigament of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 5 Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 241 1 Introduction 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0.H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 291 3 Electron Analysis Methods 291 5 Some Other Methods 291 5 Some Other Methods 291 1 Introduction 291 2 The Seanning Probe Techniques 297 9 The Seanning Tunneling Microscope 300 3 The Seanning Froree M		4 X-Ray Lithography	234
6 Ion Beam Lithography 239 7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 Introduction 247 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 St. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 Introduction 1 Introduction 275 0. H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 291 5 Some Other Methods 295 Introduction 2 X-ray Analysis Methods 295 5 Some Other Methods 295 1 Introduction 297 2 The		5 Electron Beam Lithography	236
7 Photoresist 241 8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 st. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 284 4 Surface Sensitive Analytical Methods 295 5 Some Other Methods 295 1 Introduction 297 2 The Scanning Truneling Microscope 300 3 The Scanning Torneling Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		6 Ion Beam Lithography	239
8 Alignment of Several Mask Layers 243 9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 s. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1 Introduction 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 291 5 Some Other Methods 291 5 Some Other Methods 291 5 Some Other Methods 291 6 Scanning Probe Techniques 297 9 P. Ebert, Research Center Jülich, Germany / K. Scot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1 Introduction 299 2 The Scanning Tunneling Microscope 300 <td></td> <td>7 Photoresist</td> <td>241</td>		7 Photoresist	241
9 Nanoimprint Lithography 244 10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 st. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 271 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Scot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 299 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organi		8 Alignment of Several Mask Layers	243
10 Conclusions 246 10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 St. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 273 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		9 Nanoimprint Lithography	244
10 Material Removing Techniques – Etching and Chemical Mechanical Polishing 249 St. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 251 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 274 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 276 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 2 The Scanning Tunneling Microscope 300 300 3 The Scanning Force Microscope 305 4 Inaging of soft organic or biological Samples 313		10 Conclusions	246
10 Material Refloving Techniques – Exching and Chemical Mechanical Folishing 249 St. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA 1 1 Introduction 251 2 Etch Techniques 251 3 CMP – Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 1 Introduction 275 1 Natorial Methods 284 284 4 Surface Sensitive Analysis Methods 284 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 300 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314	1	0 Material Removing Techniques - Etching and Chemical Machanical Polishing	240
1 Introduction 251 2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0.H. Seeck, DESY, Hamburg, Germany 273 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 I Introduction 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 The Scanning Tuneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314	1	St. Schneider, Research Center Jülich, Germany / S. McClatchie, LAM Research, USA	249
2 Etch Techniques 251 3 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 273 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 299 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		1 Introduction	251
3 CMP - Chemical Mechanical Polishing 264 11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 299 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		2 Etch Techniques	251
11 Analysis by Diffraction and Fluorescence Methods 273 0. H. Seeck, DESY, Hamburg, Germany 1 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 276 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 291 5 Some Other Methods 295 11 Introduction 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		3 CMP – Chemical Mechanical Polishing	264
11 Analysis by Diffraction and Photescence Methods 213 0. H. Seeck, DESY, Hamburg, Germany 275 1 Introduction 275 2 X-ray Analysis Methods 276 3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 11 Scanning Probe Techniques P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314	1	1 Analysis by Diffraction and Eluorescence Methods	273
1Introduction2752X-ray Analysis Methods2763Electron Analysis Methods2844Surface Sensitive Analytical Methods2915Some Other Methods29512Scanning Probe Techniques P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany1Introduction2992The Scanning Tunneling Microscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		O. H. Seeck, DESY, Hamburg, Germany	215
2X-ray Analysis Methods2763Electron Analysis Methods2844Surface Sensitive Analytical Methods2915Some Other Methods29512Scanning Probe Techniques P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany1Introduction2992The Scanning Tunneling Microscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		1 Introduction	275
3 Electron Analysis Methods 284 4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 12 Scanning Probe Techniques P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		2 X-ray Analysis Methods	276
4 Surface Sensitive Analytical Methods 291 5 Some Other Methods 295 11 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 299 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		3 Electron Analysis Methods	284
5 Some Other Methods 295 12 Scanning Probe Techniques 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 297 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314		4 Surface Sensitive Analytical Methods	291
12Scanning Probe Techniques P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany2971Introduction2992The Scanning Tunneling Microscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		5 Some Other Methods	295
12 Scanning From Feelingues 297 P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany 1 1 Introduction 299 2 The Scanning Tunneling Microscope 300 3 The Scanning Force Microscope 305 4 Imaging of soft organic or biological Samples 313 5 Manipulation of Atoms and Molecules 314	1	2 Scanning Probe Techniques	207
1Introduction2992The Scanning Tunneling Microscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		P. Ebert, Research Center Jülich, Germany / K. Szot, Research Center Jülich, Germany / A. Roelofs, RWTH Aachen University, Germany	291
2The Scanning Tunneling Microscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		1 Introduction	200
2The Scanning Furthering Metoscope3003The Scanning Force Microscope3054Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		2 The Scanning Tunneling Microscope	299 300
4Imaging of soft organic or biological Samples3135Manipulation of Atoms and Molecules314		3 The Scanning Force Microscope	305
5 Manipulation of Atoms and Molecules 314		4 Imaging of soft organic or biological Samples	313
		5 Manipulation of Atoms and Molecules	314

III Log	II Logic Devices 321		
1	Fundamentals of Logic Devices	324	
2	Physical Limits to Computation	328	
3	Concepts of Logic Devices	332	
4	Architectures	340	
5	Performance of Information Processing Systems	345	
6	Ultimate Computation	353	

13	Silicon MOSFETs – Novel Materials and Alternative Concepts	359
	L.W. A. Toung, ISMT-Thurps Semiconauciors, Berguin / S.Manu, Research Center Juich, Germany / T. B. Origin, Sunjora University, OSA	261
	2 Fundamentals of MOSEET Devices	362
	3 Scaling Rules	366
	4 Silicon-Dioxide Based Gate Dielectrics	369
	5 Metal Gates	376
	6 Junctions and Contacts	377
	7 Advanced MOSFETs Concepts	380
	8 Summary	383
14	Ferroelectric Field Effect Transistors	387
	H. Kohlstedt, Research Center Jülich, Germany / H. Ishiwara, Tokyo Institute of Technology, Japan	
	1 Introduction	389
	2 Principles of Ferroelectric Field Effect Transistors	389
	3 Electrical Characterization of FeFETs	394
	4 Cell Designs and Device Modeling for FeFETs	400
	5 Neural Network Circuits with FeFETs	402
	6 Summary and Outlook	403
15	Quantum Transport Devices Based on Resonant Tunneling	407
	K.Maezawa, Nagoya University, Japan / A. Förster, Research Center Jülich, Germany	
	1 Introduction	409
	2 Electron Tunneling	409
	3 Resonant Tunneling Diodes	412
	4 Resonant Tunneling Devices	415
	5 Summary and Outlook	422
16	Single-Electron Devices for Logic Applications K. Uchida, Toshiba Corporation, Japan	425
	1 Introduction	427
	2 Single-Electron Devices	427
	3 Application of Single-Electron Devices to Logic Circuits	435
	4 Future Directions	441

17	Superconductor Digital Electronics	445
	M. Siegel, University of Karlsruhe, Germany	
	1 Introduction	447
	2 Josephson Junctions	447
	3 Voltage-State Logic	450
	4 Single-Flux-Quantum Logic	451
	5 Superconductor Integrated Circuit Technology	454
	6 Present Status of RSFQ Logic	457
	7 Summary	459
18	Quantum Computing Using Superconductors	461
	A. Ustinov, University Erlangen-Nuremberg, Germany	
	1 The Principle of Quantum Computing	463
	2 Computing with Qubits	464
	3 Qubits: How to Realize them	465
	4 Why Superconductors?	465
	5 Charge Qubits	466
	6 Flux Qubits	468
	7 Other Qubits	469
	8 Decoherence Mechanisms	470
	9 Outlook	470
19	Carbon Nanotubes for Data Processing	473
	J. Appenzeller, IBM Research, USA / E. Joselevich, Weizman Institute, Israel / W. Hönlein, Infineon Technologies, Germany	
	1 Introduction	475
	2 Electronic Properties	476
	3 Synthesis of Carbon Nanotubes	482
	4 Carbon Nanotube Interconnects	487
	5 Carbon Nanotubes Field Effect Transistors (CNTFETs)	489
	6 Nanotubes for Memory Applications	495
	7 Prospects of an All-CNT Nanoelectronics	496
20	Molecular Electronics	501
20	Molecular Electronics M.Mayor, Research Center Karlsruhe, Germany / H.Weber, Research Center Karlsruhe, Germany / R.Waser, Research Center Jülich & RWTH Aachen, Germany	501
	1 Introduction	503
	2 Electrodes and Contacts	505
	3 Functions	506
	3 Functions4 Molecular Electronic Devices - First Test Systems	506 511
	 Functions Molecular Electronic Devices - First Test Systems Simulation and Circuit Design 	506 511 517
	 Functions Molecular Electronic Devices - First Test Systems Simulation and Circuit Design Fabrication 	506 511 517 520

IV I	Random Access Memories	527 529
	2 Physical Storage Principles	530
	3 Timing schemes	533
	4 General Scaling Trends for Future Memory Generations	534
21	High Permittivity Materials for DRAMs	530
	H. Schroeder, Research Center Jülich, Germany / A. Kingon, North Carolina State University, USA	557
	1 Introduction	541
	2 Basic Operation of DRAM Cells	542
	3 Challenges for Gb DRAM Capacitors	543
	4 Properties of High-Permittivity Dielectrics	545
	5 Stability of Capacitor Charge and Reliability of the Cell	549
	6 Integration Aspects	553
	7 High-Permittivity Materials in DRAM	556
24	2 Ferroelectric Kandom Access Memories U. Böttger, RWTH Aachen University, Germany / S. Summerfelt, Texas Instruments, USA	565
	1 Introduction	567
	2 FeRAM Circuit Design	569
	3 Ferroelectric Thin Film Properties	575
	4 Thin Film Integration	578
	5 Failure Mechanisms	582
	7 Summary	585 588
23	Magnotorosistivo DAM	501
2.	J. M. Slaughter, Motorola Laboratories, USA / M. DeHerrera, Motorola Semiconductor, USA / H. Dürr. BESSY. Berlin. Germany	591
	1 Introduction	503
	2 Implementation of MRAM Devices	593
	3 Magnetic Stability of MRAM Devices	598
	4 Ultrafast Magnetization Reversal	604
	5 Summary and Outlook	605

VN	Image Devices 1 Definition	607 609
	2 Physical Storage Principle	610
	3 Distributed Storage	614
24	Hard Disk Drives A. Dietzel, IBM Storage Europe, Germany	617
	1 Introduction	619
	2 Magnetic Hard Disk Drives	619
	3 Inductive Write Head	620
	4 Magnetic Recording Media	622
	5 Magnetic Read Head	625
	6 Head-Disk Interface	627
	/ Future Frends	628
	8 Summary	030
25	Magneto-Optical Discs K. Röll, Kassel University, Germany	633
	1 Introduction	635
	2 Principle of Magneto-Optical Data Storage	635
	3 Material Properties	637
	4 Application of Exchanged Coupled Layers	640
	5 Summary and Outlook	642
26	Rewritable DVDs Based on Phase Change Materials M.Wuttig, RWTH Aachen University, Germany	645
	1 Introduction and Principle of Phase Change Media	647
	2 The Velocity of Phase Transformations	649
	3 Requirements for Phase Change Media	651
	4 Present Status of Phase Change Materials	654
	5 Concepts to Improve Storage Density	655
	6 Phase Change Random Access Memory (PCRAM)	656
	7 Summary	658
27	Holographic Data Storage M. Imlau, University of Osnabrück, Germany / T. Bieringer, Bayer AG, Germany /	659
	S. G. Odoulov, National Academy of Sciences, Russia / Th.Woike, University of Cologne, Germany	
	1 Introduction	661
	2 Fundamentals of Holographic Information Storage	661
	3 Optical Processes	664
	4 Inorganic Materials	671
	5 Photoaddressable Polymers	678
	6 Outlook	684
28	AFM-Based Mass Storage – The Millipede Concept P. Vettiger, IBM Research, Switzerland / M. Despont, IBM Research, Switzerland / U. Dürig, IBM Research, Switzerland / M. A. Lantz, IBM Research, Switzerland / H. E. Rothuizen, IBM Research, Switzerland / G.K. Binnig, IBM Research, Switzerland	687
	1 Introduction. Motivation. and Objectives	689
	2 The Millipede Concept	690
	3 Thermomechanical AFM Data Storage	691
	4 Polymer Medium	692
	5 Array Design, Technology, and Fabrication	694
	6 Array Characterization	697
	7 First Write/Read Results With the 32×32 Array Chip	698
	8 Discussion of Possible Millipede Applications in Data Storage	698
	9 Summary and Outlook	699

VI D	ata Transmission and Interfaces	703
	1 Signal Transmission	705
	2 Types of Signals and Limits to Transmission	706
	3 Unmodulated Transmission – Transmission Lines	707
	4 Modulated Transmission - Communication Systems	709
29	Transmission on Chip and Board Level	715
	W. Mokwa, RW IH Aachen University, Germany	
	1 Introduction	717
	2 On-Chip Interconnection Technology	718
	3 Chip to Substrate Interconnection	720
	4 Ball-Grid-Array	725
	5 Multi Chip Modules	725
	6 Three Dimensional Packaging	726
	7 Summary	728
30	Photonic Networks	731
	C. Buchal, Research Center Jülich, Germany	
	1 Introduction	733
	2 Guiding Photons in Optical Fibers	737
	3 Light Sources	743
	4 Photodetectors	747
	5 Optical Amplifiers	749
	6 Switches and Modulators	750
	7 Summary	754
31	Microwaya Communication Systems Noval Approaches for Passive Devices	757
51	N Klein Research Center Jülich Germany	131
	1. Introduction	750
	Introduction Some Important Associate of Microwaya Communication Systems	759
	 Some Important Aspects of Microwave Communication Systems Basic Droportion of Desenant Microwave Devices 	760
	Basic Properties of Metola Superconductors and Dialactric Materials	762
	4 Microwave Properties of Metals, Superconductors, and Dielectric Materials 5 Nevel Dessive Devices for Microwave Communication Systems	/00
	5 Novel Passive Devices for Microwave Communication Systems	775
	6 Micromechanics for Microwaves: RF MEMS and FBARs	775
	/ Photonic Bandgap Structures	777
	8 Summary	//8
32	Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain	781
	P. Fromherz, Max Planck Institute of Biochemistry, Germany	
	1 Introduction	783
	2 Iono-Electronic Interface	784
	3 Neuron-Silicon Circuits	794
	4 Brain-Silicon Chips	804
	5 Summary and Outlook	808

II S	ensor Arrays and Imaging Systems	811
	1 Classification and Physical Principles of Sensors	813
	2 Electronic Sensor Arrays	815
	3 Biological Sensor Arrays	816
33	Optical 3-D Time-of-Flight Imaging System B. J. Hosticka, Fraunhofer Institute IMS, Duisburg, Germany / W. Brockherde, Fraunhofer Institute IMS, Duisburg, Germany / R. Jeremias, Fraunhofer Institute IMS, Germany	821
	1 Introduction	823
	2 Taxonomy of Optical 3-D Techniques	824
	3 CMOS Imaging	824
	4 CMOS 3-D Time-of-Flight Image Sensor	826
	5 Application Examples	830
	6 Summary	830
34	Pyroelectric Detector Arrays for IR Imaging	833
	P.Muralt, EPFL, Switzerland / H.R. Beratan, Raytheon Systems, USA	
	1 Introduction	835
	2 Operation Principle of Pyroelectric IR Detectors	835
	3 Pyroelectric Materials	842
	4 Realized Devices, Characterization, and Processing Issues	843
	5 Summary	848
35	Electronic Noses	851
	CD. Kohl, Justus Liebig University Giessen, Germany	
	1 Introduction	853
	2 Operating Principles of Gas Sensor Elements	853
	3 Electronic Noses	858
	4 Signal Evaluation	858
	5 Dedicated Examples	859
	6 Summary and Outlook	862
36	2-D Tactile Sensors and Tactile Sensor Arrays	865
	K.Machida, NTT Microsystem Integration Laboratories, Japan / J. Kent, Elo TouchSystems, California, USA	
	1 Introduction	867
	2 Definitions and Classifications	867
	3 Resistive Touchscreens	870
	4 Ultrasonic Touchscreens	871
	5 Robot Tactile Sensors	872
	6 Fingerprint Sensors	873
	7 Summary and Outlook	877

V

VIII	Disp	lays	881
	1	Definition	883
	2	Photometry	884
	3	Sensitivity of Human Eye	885
	4	Color Theory	886
	5	Display Concepts and Addressing	887
	6	3-D Display Concepts	887

37	Liquid Crystal Displays R. Zorn, Research Center Jülich, Germany / ST.Wu, University of Central Florida, USA	891
	1 Introduction	893
	2 Liquid Crystal Materials	894
	3 Twisted Nematic Cell	898
	4 Addressing of Liquid Crystal Displays	900
	5 Cells for High-Resolution Displays	903
	6 Backlighting	905
	7 Reflective Liquid Crystal Displays	906
	8 Transflective Displays	909
	9 Projection Displays	909
	10 New Liquid Crystal Display Principles	910
	11 Summary	913

38	Organic Light Emitting Devices M. Pfeiffer, TU Dresden, Germany / S. R. Forrest, Princeton University, USA	915
	1 Introduction	917
	2 Organic Semiconductors	918
	3 Organic Light Emitting Diodes	920
	4 Organic Displays	927

39	Field-Emission and Plasma Displays P. K. Bachmann, Philips Research Laboratories, Germany / H. Bechtel, Philips Research Laboratories, Germany / G. Spekowius, Philips Research Laboratories, Germany	
	1 Introduction	935
	2 Field Emission Displays (FEDs)	935
	3 Plasma Display Panels (PDPs)4 Summary	
	1 Introduction	961
	2 Microparticle-based Displays	962
	3 Alternative Paper-like Display Technologies	967
	4 Flexible Backplane Electronics	969
	5 Outlook and Vision	971

Abbreviations	973
Symbols	979
Authors	985
Index	989

Arbitrarily selected sample pages

Click to download sample PDF files

Sample pages of Chapter 13:

<u>Silicon MOSFETs – Novel Materials and Alternative Concepts</u> (127 KB)

Sample pages of Chapter 16: <u>Single-Electron Devices for Logic Applications</u> (177 KB)

Sample pages of Chapter 19: <u>Carbon Nanotubes for Data Processing</u> (404 KB)

Sample pages of Chapter 20: <u>Molecular Electronics</u> (126 KB)

Sample pages of Part IV:

Introduction to Part IV: Random Access Memories (158 KB)

Sample pages of Chapter 28:

AFM-Based Mass Storage – The Millipede Concept (160 KB)

Sample pages of Chapter 32:

<u>Neuroelectronic Interfacing:</u> <u>Semiconductor Chips with Ion Channels, Nerve Cells, and Brain</u> (135 KB)

> Please note that the figure resolution in this pdf files is much less than in the original book

Quantum Computing using Superconducting Circuits

Alexey V. Ustinov

Physikalisches Institut, Universität Erlangen-Nürnberg 91058 Erlangen, Germany

1 The principle of quantum computing

The Quantum Computing (QC) has become a very hot topic in the past few years. It excited many scientists from various areas, i.e. theoretical and experimental physics, computer science and mathematics. What is QC? Although the concept of information underlying all modern computer technology is essentially classical, physicists know that nature obeys the laws of quantum mechanics. The idea of QC has been developed theoretically over several decades to elucidate fundamental questions concerning the capabilities and limitations of machines in which information is treated quantum mechanically. In contrast to classical computing that we all know, QC deals with quantum information processing. In quantum computers the ones and zeros of classical digital computers are replaced by the quantum state of a two-level system. Shortly speaking, QC is based on the controlled time evolution of quantum mechanical systems.

Classical computers operate with *bits*; quantum computers operate with quantum bits that have been named *qubits*. Unlike their classical counterparts, which have states of only 0 or 1, qubits can be in a complex linear superposition of both states until they are finally read out. For example, the states of a spin 1/2 particle can be used for quantum computation. For a qubit, the two values of the classical bit (0 and 1) are replaced by the ground state $(|0\rangle)$ and the first excited $(|1\rangle)$ state of a quantum two-level system.

Figure 1 illustrates the difference between a classical bit and a quantum bit. A classical two-state system can be prepared and stored in either of the states 0 or 1. This system is characterized by two stable states, e.g. as a particle placed in a double-well potential. In quantum mechanics, a particle is described by a quantum-mechanical wavefunction and it can tunnel under the barrier, which separates two wells. As a consequence, a particle can be in two or more states at the same time — a so called superposition of states. A quantum system characterized by the double-well potential has the two lowest energy states $|0\rangle$ and $|1\rangle$. The wave function for the ground state $|0\rangle$ is symmetric, for the excited state $|1\rangle$ it is antisymmetric. Quantum theory predicts that a system prepared in a superposition state should follow coherent oscillations between the two wells. Once a measurement is performed, the probability of finding the particle in the specific well (left or right) oscillates periodically with time. The frequency ω of these coherent oscillations is proportional to the quantum tunneling rate between the wells. This leads to splitting of the lowest energy level by a so-called coherence gap $\Delta = \hbar \omega$. Many elementary books on quantum mechanics treat the physics of two-level systems that is essential for the understanding of QC.

Figure 1. (a) A Classical computer manipulates with bits, which may take the values 0 or 1. (b) A Quantum computer manipulates with quantum-mechanical two-level systems called qubits. The two quantum states are noted as $|0\rangle$ and $|1\rangle$.

While one classical bit of information is stored as either 0 or 1, a qubit can be in a weighted superposition of both states. For example, $a|0\rangle + b|1\rangle$, where a and b are complex numbers that vary with time t, and $|a|^2 + |b|^2 = 1$. Thus, not only 0 and 1, but all the states $|\Psi(t)\rangle = a(t)|0\rangle + b(t)|1\rangle$ can be used to encode information in a qubit. This fact provides massive parallelism of QC due to superposition of states. When measured with a readout operator, the qubit appears to collapse to state $|0\rangle$ with probability $|a|^2$, and to state $|1\rangle$ with probability $|b|^2$. The state of two qubits can be written as a four-dimensional vector $|\Psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$, where $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$. The probability of measuring the amplitude of each state is given by the magnitude of its squared coefficient. In general, the state of n qubits is specified by $(2^{n+1} - 1)$ real numbers — an exponentially large amount of information, relative to the number of physical particles required. Most of these states are *entangled* — to create them requires some kind of interaction between the qubits, and the qubits cannot be treated entirely independently from one another. An entangled state cannot be written simply as a product of the states of individual qubits.

2 Computing with qubits

The great interest in QC is related to the fact that some problems, which are practically intractable with classical algorithms, can be solved much faster with QC. Factorization of large numbers, a quantum algorithm for which was proposed by P. Shor [1], is probably the best-known example in this respect. Shor showed that quantum computers could factor large numbers into prime factors in polynomial number of steps, compared to exponential number of steps on classical computers. What it practically means can be illustrated by an example: Using a modern workstation cluster, a factorization of a number N with L=400 digits will require 10¹⁰ years, which is larger than the age of the Universe. But a single hypothetic quantum computer should be able to do this job for less than 3 years! Shor's factoring algorithm works by using a quantum computer to quickly determine the period of the function $F(x) = a^x \mod N$ (that means the remainder of a^x divided by N), where a is a randomly chosen small number with no factors in common with N. From this period, the techniques developed in the number theory can be used to factor N with high probability. The two main components of the algorithm, modular exponentiation (computation of $a^x \mod N$) and the inverse quantum Fourier transform take only $\sim L^3$ operations.

Prime factorization is an essential part of modern public key cryptographic protocols, paramount to privacy and security in the electronic world. As quantum computers can, at least in theory, factor numbers in exponentially fewer steps than classical computers, they can be used to crack any modern cryptographic protocol. Another problem that can be treated very efficiently by QC is sorting [2]. Quantum computer should be able to search databases in $\sim \sqrt{N}$ queries rather than $\sim N$ on an ordinary machine.

Let us briefly discuss the basic computational operations with a spin system of qubits as an example [3]. Manipulations of spin systems have been widely studied and nowadays nuclear magnetic resonance (NMR) physicists can prepare the spin system in any state and let it evolve to any other state. Controlled evolution between the two states $|0\rangle$ and $|1\rangle$ is obtained by applying resonant microwaves to the system but state control can also be achieved with a fast dc pulse of high amplitude. By choosing the appropriate pulse widths, the NOT operation (spin flip) can be established as

$$|0\rangle \rightarrow |1\rangle; |1\rangle \rightarrow |0\rangle,$$
 (1)

or the Hadamard transformation (preparation of a superposition)

$$|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2}; |1\rangle \rightarrow (|0\rangle - |1\rangle)/\sqrt{2}.$$
 (2)

These unitary *single bit* operations alone do not make a quantum computer yet. Together with singlebit operations, it is of fundamental importance to perform *two-bit* quantum operations; i.e., to control the unitary evolution of entangled states. Thus, a universal quantum computer needs both one and twoqubit gates. An example for a universal two-qubit gate is the controlled-NOT operation:

$$|00\rangle \rightarrow |00\rangle; |01\rangle \rightarrow |01\rangle; |10\rangle \rightarrow |11\rangle; |11\rangle \rightarrow |10\rangle.$$
 (3)

It has been shown that the single-bit operations and the controlled-NOT operation are sufficient to implement arbitrary algorithms on a quantum computer. *Quantum computers can be viewed as programmable quantum interferometers*. Initially prepared in a superposition of all the possible input states using the Hadamard gate (2), the computation evolves in parallel along all its possible paths, which interfere constructively towards the desired output state. This intrinsic parallelism in the evolution of quantum systems allows for an exponentially more efficient way of performing computations.

Without going into any detail due to space limitation of this review, it is worth noting that the above mentioned Shor's algorithm uses two registers of $n = 2\lceil \log_2 N \rceil$ and $m = \lceil \log_2 N \rceil$ qubits. The algorithm is realized by five major computation steps, namely: (1) Initialization of both registers by preparing their initial state; (2) Applying a Hadamard transformation to the first *n* qubits; (3) Multiplying the second register by $a^x \mod N$ for some random a < N which has no common factors with *N*; (4) Performing the inverse quantum Fourier transformation (based on two-qubit controlled-phase rotation operator) on the first register; (5) Measuring the qubits in the first register. For detailed reviews devoted to algorithms of QC, we refer to Refs. [4—6].

3 Qubits: how to realize them?

It is common to adopt the spin 1/2 particle language for describing quantum algorithms (see Figure 2). Manipulations of spin systems have been widely studied and already used for practical applications. Nowadays, by applying electromagnetic fields and pulses to spins in molecules, nuclear magnetic resonance (NMR) physicists can prepare these spin systems in any state and let them evolve to any other state. The controlled evolution between the two states $|0\rangle$ and $|1\rangle$ is obtained by applying resonant microwaves to the system.

Figure 2. An example of a two-level system is a particle with the spin 1/2. The two basis quantum states $|0\rangle$ and $|1\rangle$ correspond to the spin orientations down and up with respect to the quantization axis B_z of the external magnetic field.

Quantum theory predicts that if such a system is strongly coupled to the environment, it remains localized in one state and so behaves classically. Thus it is very important to have the quantum system decoupled from the rest of the world. Weak coupling to the environment damps the coherent oscillations between the states discussed in Section 1. The damping rate vanishes as the coupling to the environment goes to zero. The inverse of the damping rate is often called *decoherence time* τ_{dec} . This time is essentially the quantum memory of the system — after long enough time $t > \tau_{dec}$ the system "forgets" its initial quantum state and is not any more coherent with it. In the ideal case, for using a quantum system as qubit we would want to have $\tau_{dec} \rightarrow \infty$.

There are at least five important criteria that must be satisfied by possible hardware for a quantum computer [7]. To do QC, one needs:

- 1. Identifiable qubits and the ability to scale them up in number. This means that being able to build up only few qubits is not sufficient for making any useful quantum computation. For practical QC one would require making very many (ideally, any desired number) of qubits in some controlled and reliable way.
- 2. Ability to prepare the initial state of whole system. All the qubits have to be first prepared in a certain state (like, e.g. $|0\rangle$ or $|1\rangle$) and only after that quantum computation can be started.
- 3. Low decoherence the key issue, which rules out many of possible candidate system for the quantum hardware. For quantum-coherent oscillations to occur, it is required that $\tau_{dec}\Delta/h >> 1$. An approximate benchmark for low enough decoherence is a fidelity loss of less than 10^{-4} per elementary quantum gate operation.
- 4. Quantum gates. The universal set of gates is needed in order to control the system Hamiltonian. After preparing a certain state, we have to be able to switch on and off the interaction between them in order to make qubits act together and do useful computation.
- 5. Perform a measurement. The final requirement for QC is the ability of performing quantum measurements on the qubits to obtain the result of the computation. Such readout transfers the information to the external world, i.e. to classical computers, in order to make the information useful.

Any candidates for quantum computing hardware should be assessed against this "DiVincenzo checklist" [7].

A number of two-level systems have been examined over the last few years as candidates for qubits and quantum computing. These include ions in an electromagnetic trap [8], atoms in beams interacting with cavities [9], electronic [10] and spin [11] states in quantum dots, nuclear spins in molecules [12],[13] or in solids [14], charge states of nanometer-scale superconductors [15],[16], flux states of superconducting circuits [17],[18],[19], quantum Hall systems [20], electrons on superfluid helium [21], and nanometer-scale magnetic particles [22]. Though all these systems fulfill some points of the checklist, some open questions remain. There is currently no clear quantum computing favorite, analogous to the transistor for silicon-based classical computing. In addition to further work on existing systems, new candidates for quantum computing hardware should be explored.

Maintaining the coherence of a quantum device throughout the calculation is the major challenge for practical quantum computation. The device should be maximally decoupled from the environment in order to avoid decoherence and thus the loss of the quantum information.

4 Why superconductors?

The advantage of microscopic quantum systems (atoms, spins, photons, etc.) is that they can be easily isolated from the environment, which reduces decoherence. The disadvantage is that the integration of many qubits into a more complex circuit in order to build a practical computer is a formidable task. From that point of view, macroscopic quantum systems offer much more flexibility to design a quantum computer using standard integrated circuit technology. Already proposed macroscopic qubits are based on nano-structured electronic circuits, which may consist of either quantum dots or superconducting Josephson junctions.

The large number of degrees of freedom associated with a solid-state device makes it more difficult to maintain the coherence. As of today, this problem has been met by either resorting to well isolated spins (on quantum dots [11] or through deliberate doping of semiconductors [14]) or by making use of the quasi-particle spectrum in superconductors that is characterized by an energy gap.

All proposed superconducting quantum circuits are based on superconducting structures containing Josephson junctions. A Josephson junction is a structure consisting of two superconducting electrodes separated by a thin dielectric tunnel barrier (see Figure 3).

There are two possibilities for constructing a superconducting qubit. They differ by the principle of coding the quantum information. The first approach is based on very small Josephson junctions, which are operated maintaining coherence between individual states of electron Cooper pairs. This type of qubit is called a *charge qubit*. The charge states of a small superconducting island (a so-called electron box) are used as the basis states of this qubit. The second, alternative approach relies on the macroscopic quantum coherence between magnetic flux states in relatively large Josephson junction circuits. The latter qubit is known as magnetic *flux (phase) qubit*. In fact, the flux qubit is based on a special realization of a superconducting quantum interference device (SQUID). An up-to-date review devoted to the implementation of quantum computation by means of superconducting nanocircuits has been recently published by Makhlin, Schön and Shnirman [23].

5 Charge qubits

These devices combine the coherence of Cooper pair tunneling with the control mechanisms developed for single-charge systems and Coulomb-blockade phenomena. The qubit is realized as a small (few 100 nm in dimensions) superconducting island attached to a larger superconducting electrode. The charge on the island, separated from a superconducting reservoir by a low-capacitance Josephson junction, is used in the qubit as the quantum degree of freedom. The basis states $|0\rangle$ and $|1\rangle$ differ by the number of superconducting Cooper pair charges on the island. The charge on the island can be controlled externally be a gate voltage. In the description of the charge qubits, I follow the guideline of review [23].

Quantum-coherent tunneling of Cooper pairs is, to some extent, similar to single-electron tunneling between very small conducting islands. These islands must be small enough so that the charging energy of a Cooper pair moving between the superconducting islands dominates over all other characteristic energies in the system.

Figure 4. A Josephson charge qubit, in its simplest design, is formed by a superconducting electron box [23]. The box is separated from the superconducting reservoir by a Josephson tunnel junction.

The simplest Josephson junction qubit is shown in Figure 4. It consists of a small superconducting island ("box") with *n* excess Cooper pair charges relative to some neutral reference state. The island is connected to a superconducting reservoir by a tunnel junction with capacitance C_J and Josephson coupling energy E_J . A control gate voltage V_G is applied to the system via a gate capacitor C_G . Suitable values of the junction capacitance, which can be fabricated routinely by present-day technologies, are in the range of femtofarad.

At low temperatures (in the mK range), the only charge carriers that tunnel through the junction are superconducting Cooper pairs. The system is described by the Hamiltonian:

$$H = 4E_C(n - n_G)^2 + E_I \cos \varphi.$$
⁽⁴⁾

Here ϕ is the phase of the superconducting order parameter of the island. The variable ϕ is quantum mechanical conjugate of the number of excess Cooper pair charges *n* on the island:

$$n = -i\hbar \partial / \partial (\hbar \varphi) \,. \tag{5}$$

Equation (5) is linked to the fundamental quantum-mechanical uncertainty relation for a Josephson junction between the superconducting grain and reservoir, which writes as $\Delta n \cdot \Delta \varphi \ge 1$. Thus, the superconducting phase difference φ between the island and reservoir cannot be determined simultaneously with the number of electron pairs *n* on the island. It is analogous to a condition that holds, e.g., for an optical pulse in a fiber — the number of photons in the pulse cannot be fixed simultaneously with the phase of the pulse.

In the charge qubit, the charge on the island acts as a control parameter. The gate charge is normalized by the charge of a Cooper pair, $n_G = C_G V_G /(2e)$, it accounts for the effect of the gate voltage V_G . For the charge qubit, the charging energy $E_C = e^2/(2(C_J+C_G))$ is much larger than the Josephson coupling energy E_J . A convenient basis is formed by the charge states, parameterized by the number of Cooper pairs *n* on the island. In this basis the Hamiltonian (4) can be written

$$H = \sum_{n} \left\{ 4E_C (n - n_G)^2 |n\rangle \langle n| + \frac{1}{2} E_J \left(n \rangle \langle n + 1| + |n + 1\rangle \langle n| \right) \right\}.$$
(6)

For most values of n_{G} , the energy levels are dominated by the charging part of the Hamiltonian. However, when n_{G} is approximately half-integer and the charging energies of two adjacent states n=0 and n=1 are close to each other, the Josephson tunneling mixes them strongly, see Figure 5.

Figure 5. The plot shows the charging energy of the superconducting island as a function of the normalized gate charge n_G for different numbers of extra Cooper pairs n on the island (dashed lines). Near degeneracy points, the weaker Josephson coupling mixes the charge states and modifies the energy of the eigenstates (solid lines) and the system reduces to a two-state quantum system [24].

Figure 6. The basis states $|0\rangle$ and $|1\rangle$ of the superconducting charge qubit. They differ by the number of excess Cooper pairs *n* on the small superconducting island.

The two states of the charge qubit differ by one Cooper pair charge on the superconducting island. In the voltage range near a degeneracy point only the two states with n=0 and n=1, play a role, while all other charge states having much higher energy can be ignored. In this case, the superconducting charge box behaves as a two-level (two-state) quantum system. In spin-1/2 notation its Hamiltonian can be written as

$$H = -\frac{1}{2}B_z\hat{\sigma}_z - \frac{1}{2}B_x\hat{\sigma}_x.$$
(7)

The charge states n=0 and n=1 correspond to the spin basis states $|\downarrow\rangle$ and $|\uparrow\rangle$ as illustrated in Figure 2. The charging energy splitting, which is controlled by the gate voltage V_G , corresponds in spin notation to the *z*-component of the magnetic field

$$B_z \equiv 4E_C(1-2n_G). \tag{8}$$

In its turn, the Josephson energy plays the role of the x-component of the magnetic field

$$B_x \equiv E_J. \tag{9}$$

The manipulations of charge qubits can be accomplished by switching the gate voltages [15] that play the role of B_z and modify the induced charge $2en_G$. The Josephson coupling energy E_J that corresponds to B_x can be controlled by replacing the single junction by two junctions enclosed in a superconducting loop (SQUID) [24], as shown in Figure 7. In this modified circuit, a current supplied through a superconducting control line that is inductively coupled to the SQUID induces a magnetic flux Φ_x , which changes the critical current and thus the Josephson coupling energy E_J of the device.

Figure 7. A charge qubit with tunable effective Josephson coupling. A flux-threaded SQUID replaces the single Josephson junction. A current carrying loop coupled to the SQUID controls the magnetic flux.

In addition to the manipulation of the qubit, its final quantum state has to be read out. For a Josephson charge qubit, this can be accomplished by coupling it to a single-electron transistor (SET). As long as the transport voltage is turned off, the transistor has only a weak influence on the qubit. When the voltage is switched on, the dissipative current through the SET destroys the phase coherence of the qubit within a short time.

Experimentally, the coherent tunneling of Cooper pairs and the related properties of quantum mechanical superpositions of charge states has been demonstrated in spectacular experiments of Nakamura et al. [16]. These authors observed in the time domain the quantum coherent oscillations of a Josephson charge qubit prepared in a superposition of eigenstates. The layout of their qubit circuit is shown in Figure 8. It includes a small superconducting grain (a Cooper pair "box") attached to a superconducting reservoir by two Josephson junctions as shown above schematically in Figure 7.

Figure 8. Micrograph of a Cooper-pair box with a magnetic flux-controlled Josephson junction and a probe junction (Nakamura et al. [16]).

Using a dc gate, the Josephson charge qubit ("box") is prepared in the ground state far from the degeneracy point. In this regime, the ground state is close to the charge state, say, $|0\rangle$. Then the gate voltage is changed for a short time (less than one nanosecond) to a different value using the pulse gate. If it is switched to the degeneracy point, the initial state, a pure charge state, is an equal-amplitude superposition of the ground state $|0\rangle$ and the excited state $|1\rangle$, as it is illustrated in Figure 5. These two eigenstates have different energies; hence, in time they acquire different phase factors.

Figure 9. The coherent (Rabi) oscillations in the Josephson charge qubit observed in the experiments of Nakamura et al. [16].

The final state of the qubit in the experiment by Nakamura et al. [16] was measured by detecting a tunneling current through an additional probe-junction. Ideally, zero tunneling current implies that the system ended up in the $|0\rangle$ state, whereas maximum current is expected when the final state corresponds to the excited one. In the experiment, the tunneling current shows an oscillating behavior as a function of pulse length, as shown in Figure 9. These data demonstrate the coherent time evolution of a quantum state in the charge qubit.

6 Flux qubits

Since superconductivity is a macroscopically coherent phenomenon, macroscopic quantum states in superconductors offer a challenging option for quantum computing. There have already been experiments that demonstrated macroscopic quantum tunneling (MQT) of the superconducting phase in current-biased Josephson junctions and superconducting quantum interference devices (SQUIDs). Moreover, it has been found that the tunneling rate agrees well with the value predicted by the Caldeira-Leggett theory with a phenomenological treatment of the dissipation. Since MQT involves only a single potential well from which the tunneling of the system takes place, there is no issue of coherence between different quantum states attached to it.

A quantum superposition of magnetic flux states in a SQUID is called macroscopic quantum coherence (MQC). It is called macroscopic because the currents are built of billions of electrons coherently circulating within the superconducting ring. Figure 10 illustrates its main idea. If the applied magnetic flux bias to a SQUID is equal to $\Phi_0/2$ (where $\Phi_0 = \pi\hbar/e = 2.07 \times 10^{-15}$ Wb is a magnetic flux quantum, \hbar is Plank's constant, e is the electron charge), its potential energy has two symmetric minima. The flux in the SQUID loop can tunnel between the two minima. This implies that the degenerate ground state energy of the SQUID is split by the energy difference ΔE related to the tunneling matrix element, and the two states are mixed energy states. Therefore, if the coherence of this mixture can be maintained long enough, the magnetic flux will oscillate back and forth between the two states at the frequency $\Delta E/(2\pi\hbar)$. Since the observation of MQT in Josephson structures in the 80's, there is a great interest towards detecting MQC in SQUIDs. However, experiments were not successful and many of them were interrupted after the advent of high-temperature superconductivity in 1986.

A qubit can also be realized with superconducting nano-circuits in the limit $E_J >> E_C$, which is opposite to charge qubits. The magnetic flux qubits are larger than the charge qubits, which makes them easier to fabricate and test. The flux qubit dynamics is governed by the superconducting phase difference across the junction rather than by the charge. The flux qubit consists of a SQUID as a macroscopic quantum coherent system.

The Hamiltonian of a single-junction SQUID (which is also called rf-SQUID) reads

$$H = -E_J \cos\left(\frac{2\pi\Phi}{\Phi_0}\right) + \frac{\left(\Phi - \Phi_x\right)^2}{2L} + \frac{Q^2}{2C}.$$
(10)

Here, *L* is the self-inductance of the superconducting loop, and Φ is the magnetic flux in the loop. The externally applied flux is denoted by Φ_x . In the limit in which the self-inductance is large, the two first terms in the Hamiltonian form a double-well potential near $\Phi = \Phi_0/2$. The charge Q is a canonically conjugated variable to the phase difference across the junction $\varphi = 2\pi\Phi/\Phi_0$, see Eq. (5). The Hamiltonian (10) can be reduced to that of a two-state system. By controlling the applied magnetic field, all elementary operations can be performed.

Flux qubits seem more robust then charge qubits, they can be relatively easy coupled inductively. In the proposal of Mooij et al. [18], a qubit is formed by 3 junctions as shown in Figure 11. Flux qubits can be coupled by means of flux transformers, which provide inductive coupling between them.

Figure 11. The basis states $|0\rangle$ and $|1\rangle$ of the superconducting flux (persistent current) 3-junction qubit [18]. They differ by the direction of the persistent current in the superconducting loop containing the junctions.

The quantum mechanical properties of SQUIDs were thoroughly investigated in the recent past, but only last year the quantum superposition of different magnetic flux states was evidenced experimentally [19] by the SUNY group at Stony Brook. One state corresponds to a persistent current in the loop flowing clockwise whereas the other corresponds the current flowing anticlockwise. The major experimental result of the SUNY group is presented and briefly explained in Figure 12.

Figure 12. Experimental results of Friedman et al. [19]. The plot shows energy of two spectroscopically measured levels, relative to their mean energy, as a function of the energy difference between the bottoms of the wells. At the midpoint of the figure, the measured tunnel splitting Δ between the two states in this "anticrossing" is about 0.1 K. The calculated energy levels are indicated by the lines.

Nearly simultaneously with the SUNY team, the Delft group observed the quantum superposition of macroscopic persistent current states in their 3-junction SQUID [25]. Both experiments used a spectroscopic technique to detect the energy level splitting (more precisely, the level anti-crossing) due to the tunnel coupling between the two macroscopically distinct circulating current states of the circuit.

Coherent quantum oscillations in the time domain have not yet been detected in SQUID systems. To probe the time evolution, pulsed microwaves instead of continuous ones have to be applied. Observation of such oscillations would imply the demonstration of MQC, awaited since the 80's. The determination of decoherence time is the major remaining task to evaluate the feasibility of this type of flux qubits for practical quantum computing.

7 Other qubits

Recently our group suggested using the *macroscopic quantum states of Josephson vortices* as a flux qubit for quantum computation [26]. Our original idea was to use the two distinct states of a fluxon trapped in a magnetic field-controlled double-well potential inside a narrow long junction to design a qubit. Theory predicts that a fluxon in a double-well potential behaves as a quantum-coherent two-state system.

The physical principles of the fluxon qubit and the persistent current qubit are similar. It is possible by variation of the external field and the junction shape to form an arbitrarily shaped potential for a magnetic fluxon in the long Josephson junction. The amplitude of this potential can be easily varied by tuning the magnetic field. The superposition of two macroscopically distinct quantum states of the fluxon as quantum particle can be expected at the low temperatures.

In the quantum regime, the coupling between the two states depends exponentially on the size of the energy barrier separating them. The energy barrier can be tuned in a wide range by changing the magnetic field applied to the junction. At low fields, the vortex tunnels through the barrier, and thus coupling between the two states appears. At high fields, however, tunneling is essentially suppressed and the vortex remains localized in one of the states. Thus, by applying a sufficiently large field the system can be switched into the classical regime in which the quantum states of the vortex correspond to their classical counterparts.

Recently we experimentally demonstrated a protocol for the preparation and read-out of the vortex qubit states in the classical regime [27]. We were able to manipulate the vortex states by varying the magnetic field amplitude and its direction, and by applying a bias current to the junction.

Figure 13. a) Photograph of a 300 nm wide heart-shaped long Josephson junction. b) The two degenerate vortex states in a heart-shaped junction are formed by applying an in-plane magnetic field. Arrows indicate the vortex locations that correspond to the states $|0\rangle$ and $|1\rangle$.

Other proposals using multi-junction loops for designing better flux qubits are under development. In particular, the use of π -junctions, which have an unconventional current-phase relation, is considered for the design of qubits [28]. The hope here is that the combination of conventional and π -junctions in a single circuit may allow designing so-called "quiet" qubits, which do not require any external magnetic field for their operation. Thus, "quiet" qubits may be easier to decouple from the environment. However, a reliable technology for π -junctions still does not exist. The long-discussed approach to realize a π -junction by making use of a copper-oxide d-wave superconductor is still very hard to realize in practice. The most promising approach in this respect seems using so-called SFS (superconductor – ferromagnet - superconductor) junctions that are made with magnetic impurities in the Josephson channel [29].

8 Decoherence mechanisms

For performing quantum computing, it is very important that qubits are protected from the environment, i.e., from any source that could cause decoherence. This is a very difficult task because at the same time one also has to control the evolution of the qubits, which inevitably means that the qubit has to be coupled to control systems in the environment. Single atoms, spins and photons can be decoupled from the outside world. However, large-scale integration that is needed to make a quantum computer useful seems to be impossible for these microscopic systems. Qubits made using solid-state devices (quantum dots or superconducting circuits), may offer the great advantage of scalability.

In their experiment with the superconducting charge qubit, Nakamura et al. [16] estimate the decoherence time to be about 2 ns. It may be speculated that the probe junction directly coupled to their circuit and the 1/f noise (presumably due the motion of background charges) are the main source of decoherence. In their absence (which so far has been difficult to accomplish), the main dephasing mechanism is thought to be spontaneous photon emission to the electromagnetic environment. Decoherence times of the order of 1 μ s should then be possible for charge qubits.

The decoherence time for flux qubit has not been measured yet. In general, here estimates are more optimistic than for charge qubits. The decoherence times as large as milliseconds have been guessed. The 3-junction geometry has the advantage that it can be made much smaller than rf-SQUID with appropriate self-inductance L, so that it will be less sensitive to noise introduced by inductive coupling to the environment. Nevertheless, in all designs the measuring equipment coupled to qubits is expected to act destructively on quantum coherence.

9 Perspective

Superconducting tunnel junction circuits can be manipulated in a quantum coherent fashion in a suitable parameter range. Currently, they seem to be very promising to be used for quantum state engineering and as hardware for future quantum computers. We discussed their modes of operation in two basic regimes, dominated by the charge and the magnetic flux. There are several important constraints to overcome (mainly dephasing effects due to various decoherence sources) before a first

useful QC circuit will be made. Nonetheless, there are several important advantages of nano-electronic devices as compared to other physical realizations of qubits; this leaves us hope for the future.

If a quantum computer will ever be made, it would require both an input and an output interface to interact with the external world. It is worth mentioning that such interface hardware does already exist for flux qubits. It can be designed using the rapid single-flux quantum (RSFQ) logic implemented in classical superconducting electronics. Indeed, the classic-computer RSFQ interface can be used for the preparation of initial states and for the read out circuitry of the magnetic-flux carrying states. RSFQ is a well-developed technique that will be the natural choice for communicating between classic and quantum parts of superconducting quantum computer. Thus, all control and data exchange with classically operated electronics can be provided by high-speed on-chip RSFQ circuitry (see Bocko et al. [17]), and the external communication between RSFQ and room temperature semiconductor electronics can be realized by using optical fiber channels combined with MSM (metal-semiconductor-metal) switches and laser-emitting diodes.

Experimental observation of the macroscopic quantum coherent oscillations in a flux qubit, which is awaited in the near future, should open the way for practical QC based on the existing superconducting electronics technology.

10 Acknowledgement

I am grateful for discussions on this topic to G. Blatter, C. Bruder, M. J. Feldman, M. Fistul, J. R. Friedman, D. Geshkenbein, A. Kemp, Y. Makhlin, J. E. Mooij, Y. Nakamura, G. Schön, C. H. van der Wal, and A. Wallraff.

11 References

- P. W. Shor, Polynomial-Time Algorithm for Prime Factorization and Discrete Logarithms on a Quantum Computer, p. 124 in *Proceedings of the 35th Annual Symposium on the Foundations of Computer Science*, ed. S. Goldwasser (IEEE Computer Society Press, Los Alamitos, CA, 1994).
- [2] L. K. Grover, A fast quantum mechanical algorithm for database search, p. 212 in *Proceedings 28th Annual ACM Symposium on the Theory of Computing* (1996).
- [3] R. Fazio and H. van der Zant, Quantum phase transitions and vortex dynamics in superconducting networks, Physics Reports **355**, (2001) pp. 235-334.
- [4] S. Lloyd, A potentially realizable quantum computer, Science 261, 1589 (1993).
- [5] C. H. Bennett, Quantum information and computation, Phys. Today 48 (10), 24 (1995).
- [6] C.H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404, 247 (2000).
- [1] D. P. DiVincenzo, Topics in Quantum Computers, in *Mesoscopic Electron Transport*, (ed. L. Kowenhoven, G. Schön, and L. Sohn), NATO ASI Series E, (Kluwer Ac. Publ., Dordrecht, 1997); cond-mat/9612126.
- [2] J. I. Cirac and P. Zoller, A scalable quantum computer with ions in an array of microtraps, *Nature*, **40**4, 579 (2000).
- [3] S. Haroche, M. Brune, and J. M. Raimond, Experiments with Single Atoms in a Cavity— Entanglement, Schrödingers Cats and Decoherence, Phil. Trans. R. Soc. Lond. A 355, 2367 (1997).
- [4] A. Ekert and R. Jozsa, Quantum computation and Shor's factoring algorithm, Rev. Mod. Phys. 68, 733 (1996).
- [5] D. Loss and D. P. DiVicenzo, Quantum Computation with Quantum Dots, Phys. Rev. A 57, 120 (1998).
- [6] N. A. Gershenfeld and I. L. Chuang, Bulk Spin-Resonance Quantum Computation, Science 275, 350 (1997).
- [7] D. Cory, A. Fahmy, and T. Havel, Ensemble quantum computing by nuclear magnetic resonance spectroscopy, Proc. Nat. Acad. Sci. 94, 1634 (1997).
- [8] B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998).
- [9] A. Shnirman, G. Schön and Z. Hermon, Quantum Manipulations of Small Josephson Junctions, Phys. Rev. Lett. 79, 2371 (1997).
- [10] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooperpair box, Nature 398, 786 (1999).
- [11] M. F. Bocko, A. M. Herr, and M. J. Feldman, Prospects for quantum coherent computation using superconducting electronics, IEEE Trans. Appl. Superconductivity 7, 3638 (1997).
- [12] J. E. Mooji, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Josephson Persistent-Current Qubit, Science 285, 1036 (1999).
- [13] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Detection of a Schrödinger's cat state in an rf SQUID, Nature 406, 43 (2000).
- [14] V. Privman, I. D. Vagner, and G. Kventsel, Quantum computation in quantum-Hall systems, Phys. Letters A 239, 141 (1998).
- [15] P. M. Platzman and M. I. Dykman, Quantum computing with electrons floating on lliquid Helium, Science 284, 1967 (1999).

- [16] J. Tejada, E. M. Chudnovsky, E. del Barco, J. M. Hernandez, and T. P. Spiller, Magnetic qubits as hardware for quantum computers, Nanotechnology 12, 181 (2001)..
- [17] Y. Makhlin, G. Schön and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
- [18] Y. Makhlin, G. Schön, and A. Shnirman, Josephson junction qubits with controlled couplings, Nature 386, 305 (1999).
- [19] C. H. van der Wal, A. C. J. der Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Quantum superposition of macroscopic persistent-current states, Science 290, 773 (2000).
- [20] A. Wallraff, Y. Koval, M. Levitchev, M. V. Fistul, and A. V. Ustinov, Annular long Josephson junctions in a magnetic field: Engineering and probing the fluxon potential, J. Low Temp. Phys. 118, 543 (2000).
- [27] A. Kemp, A. Wallraff, and A. V. Ustinov, Testing a state preparation and read-out protocol for the vortex qubit, Physica C 368, 324 (2002).
- [28] L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel'man, A. L. Fauchere, and G. Blatter, Environmentally decoupled sds-wave Josephson junctions for quantum computing, Nature 398, 679 (1999).
- [29] V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Coupling of two superconductors through a ferromagnet: Evidence for π-junction, Phys. Rev. Lett. 86, 2427 (2001).

ORDER FORM

* The €-price refer to Germany only.

** All prices are approx prices and subject to change.

WILEY

\Box Yes, please send me the following title:	Delivery and Invoice address:	Please pass this order form to your	
copies Waser, R. (ed.) Nanoelectronics and Information Technology	private business	local bookseller	
Advanced Electronic Materials and Novel Devices € 74.90* / £45 / US\$80.00** ISBN 3-527-40363-9	Surname, First Name		
	Firm/Institution		
In EU countries the local VAT is effective. Postage will be charged. Due to fluctuating exchange rates, the prices for			
John Wiley & Sons' titles are approximate. Prices are subject to change without notice. Our standard terms and delivery conditions apply. Date of information: January 2003	Department		
	Street/P.O. Box	or to:	
Please send an invoice Cheque is enclosed Please charge my credit card		Wiley-VCH, Customer Service Department P.O. Box 101161, D-69451 Weinheim, Germany	
VISA	Postcode, City	Tel.: (49) 6201 606-400 Fax: (49) 6201 606-184 e-Mail: service@wilev-vch.de	
Card no.	Country	www.wiley-vch.de	
Date, Signature		or to:	
How to pay	Tel.	John Wiley&Sons, Ltd., Customer Services Department 1 Oldlands Way, Bognon Regis	
Please give credit card address if different from delivery address:	Fax	West Sussex, PO22 9SA England Tel.: +44 (0) 1243-843-294 Fax: +44 (0) 1243-843-296 www.wileyeurope.com	
	E-Mail		
Street		or to:	
Postcode, City	Date, Signature	Customer Care - Wiley 10475 Crosspoint Blvd, Indianapolis, IN 46256 USA	
		Tet.: 677-762-2974 Fax: 800-597-3299	
	Please keep me informed of new publications in the subject area	e-Mail: custserv@wiley.com www.wiley.com	

