overview

Advanced

'Success for the Electrical Model of White Dwarf Stars' - Wal Thornhill

Posted by ProjectC 
'Significantly, the larger the white dwarf, the lower the current density and the lower the apparent temperature. This trend has been noted with some puzzlement by researchers. White dwarfs the size of the Sun and a little larger are stars under lower electrical stress than normal. This may occur, for example, in binary star systems like that of Sirius, where one star usurps most of the available electrical energy.'

'Success for the Electrical Model of White Dwarf Stars'

<center><a href="[bazaarmodel.net] src="[bazaarmodel.net]; width="479" height="230" border="0"></a>
>> [Click on images to enlarge] The Hertzsprung-Russell diagram (left) is a plot of observations which must be explained by the chosen model of stars. The electrical model of stars reverses the direction of the x-axis to show the direct relationship between an increase in current density at the surface of a star and the higher temperature of that star, reflected by its change in color from red hot to white hot to blue hot.</center>

The main sequence is the backbone of the observations but there are sharp discontinuities between the main sequence, the giant stars and white dwarfs. In the standard thermonuclear model of stars, the explanations for these discontinuities are beset by many observational discrepancies and ad hoc patches.

In the electric star model such discontinuities are a natural feature of a plasma discharge. Main sequence stars operate like arc lights in a cinema projector. The plasma discharge at their photospheres is in arc mode. The main sequence is a direct result of increasing the current density at the surface of a star.

The white dwarfs operate more like fluorescent lights, where a fainter coronal glow-mode discharge provides the light. If you can imagine the Sun’s bright photosphere being replaced by faint white coronal light, you have the picture. White ‘dwarfs’ are not dwarfs at all. They are faint, not because they are small but because they produce their light in a different mode of plasma discharge from stars like the Sun. The current density scale for white dwarfs is different to that of the main sequence and this is why they are scattered along a lower-luminosity sequence.

...

The white dwarf also challenges the standard stellar evolution concepts because it has a chemical surface composition rich in calcium and helium that is not predicted by stellar evolution models. A paper in the Astrophysical Journal of February 2005 shows the surprise and confusion created by this star. As usual, mechanical energy in the form of a supposed “shocked wind” is proposed as the origin of weak X-ray emission at 1 keV. And despite the almost infinite number of “knobs” available to twiddle on the standard model, a match with observations has not been reached.

...

Subrahmanyan Chandrasekhar was awarded the Nobel Prize in 1983 for his theoretical work on electron degenerate white dwarfs, which predicted the existence of a relationship between mass and radius for a degenerate white dwarf. This theoretical mass-radius relation is a generally accepted underlying assumption in nearly all studies of white dwarf properties. In turn, these studies, including the white dwarf mass distribution and luminosity function, are foundations for such varied fields as stellar evolution and galactic formation. The notion of stellar collapse led on to more extreme theoretical fictions—neutron stars and black holes. The damage wrought by such an assumption for our understanding of stars and the cosmos cannot be overstated! A recent paper in The Astrophysical Journal warned, “One might assume that a theory as basic as stellar degeneracy rests on solid observational grounds, yet this is not the case. Comparison between observation and theory has shown disturbing discrepancies.” The paper cited here adds to the discrepancies.
<center></center>
In summary: nearby red and white stars that appear faint are not different to other stars. Red dwarfs are physically much smaller than the Sun but their visible glow discharge is large and of low current density and energy (red).

White ‘dwarfs,’ on the other hand, are physically larger than red dwarfs but generally smaller than the Sun. Lacking bright anode tufting they have an extended coronal type discharge and photosphere that emits faint whitish light, ultraviolet light and mild X-rays. The spectral lines are broadened, sometimes to the point of disappearance, due to the coronal electric field. This gives the misleading impression that hydrogen (whose spectral lines are smeared the most) is missing in many of these stars and that therefore they are remnants of larger stars that have lost or burned their hydrogen fuel.

Significantly, the larger the white dwarf, the lower the current density and the lower the apparent temperature. This trend has been noted with some puzzlement by researchers. White dwarfs the size of the Sun and a little larger are stars under lower electrical stress than normal. This may occur, for example, in binary star systems like that of Sirius, where one star usurps most of the available electrical energy.

There are no collapsed stars of extraordinary high density. The story of stellar evolution is fiction. The numbers of small red and white stars exceed the number of bright stars. They are formed in the same Z-pinch mechanism in dusty plasma as are all other stars. Or they may be born later by parturition (nova) of an unstable larger star. The economy and success of the Electric Universe model is readily apparent.

- Wal Thornhill, NASA’s Dim View of Stars, 22 December 2008</blockquote>