overview

Advanced

Most scientific papers are probably wrong

Posted by archive 

By Kurt Kleiner
30 August 2005
NewScientist.com news service
Source

Most published scientific research papers are wrong, according to a new analysis. Assuming that the new paper is itself correct, problems with experimental and statistical methods mean that there is less than a 50% chance that the results of any randomly chosen scientific paper are true.

John Ioannidis, an epidemiologist at the University of Ioannina School of Medicine in Greece, says that small sample sizes, poor study design, researcher bias, and selective reporting and other problems combine to make most research findings false. But even large, well-designed studies are not always right, meaning that scientists and the public have to be wary of reported findings.

"We should accept that most research findings will be refuted. Some will be replicated and validated. The replication process is more important than the first discovery," Ioannidis says.

In the paper, Ioannidis does not show that any particular findings are false. Instead, he shows statistically how the many obstacles to getting research findings right combine to make most published research wrong.

Massaged conclusions

Traditionally a study is said to be "statistically significant" if the odds are only 1 in 20 that the result could be pure chance. But in a complicated field where there are many potential hypotheses to sift through - such as whether a particular gene influences a particular disease - it is easy to reach false conclusions using this standard. If you test 20 false hypotheses, one of them is likely to show up as true, on average.

Odds get even worse for studies that are too small, studies that find small effects (for example, a drug that works for only 10% of patients), or studies where the protocol and endpoints are poorly defined, allowing researchers to massage their conclusions after the fact.

Surprisingly, Ioannidis says another predictor of false findings is if a field is "hot", with many teams feeling pressure to beat the others to statistically significant findings.

But Solomon Snyder, senior editor at the Proceedings of the National Academy of Sciences, and a neuroscientist at Johns Hopkins Medical School in Baltimore, US, says most working scientists understand the limitations of published research.

"When I read the literature, I'm not reading it to find proof like a textbook. I'm reading to get ideas. So even if something is wrong with the paper, if they have the kernel of a novel idea, that's something to think about," he says.

Journal reference: Public Library of Science Medicine (DOI: 10.1371/journal.pmed.0020124)



***
Essay
***

Why Most Published Research Findings Are False

By John P. A. Ioannidis
Summary
Source

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.

John P. A. Ioannidis is in the Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece, and Institute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America. E-mail: jioannid@cc.uoi.gr

Competing Interests: The author has declared that no competing interests exist.

Published: August 30, 2005

DOI: 10.1371/journal.pmed.0020124

Copyright: © 2005 John P. A. Ioannidis. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abbreviation: PPV, positive predictive value

Citation: Ioannidis JPA (2005) Why Most Published Research Findings Are False. PLoS Med 2(8): e124