overview

Advanced

'..the Electric Star Model for the Sun.' - Wal Thornhill

Posted by ProjectC 
'The conventional thermonuclear story of stellar evolution is incorrect so we do not know the age of the Sun, or its character in the past or future. The inexplicable and drastic global climate changes on Earth in the past may have found an answer at last in the variable nature of stars.'


<blockquote>Important Consequences of the Electric Star Model for the Sun.

1. A star is formed electromagnetically, not gravitationally, and is powered thereafter electrically (by Eddington's "subtle radiation").

2. Near the Sun, galactic transmission lines are in the form of 0.3 parsecs wide rotating Birkeland filaments (based on those detected at the center of the Milky Way). Their motion relative to the Sun will produce a slowly varying magnetic field and current density –' in other words a solar activity cycle. To that extent, all stars are variable. And just like real estate, location is vital.

3. An electric star has an internal radial electric field. But because plasma is an outstanding conductor it cannot sustain a high electric field. So plasma self-organizes to form a protective sheath or 'double layer' across which most of the electric field is concentrated and in which most of the electrical energy is stored. It is the release of that internal stored energy that causes CME's, nova outbursts, polar jets, and the birth of stellar companions.

4. In a ball of plasma like the Sun the radial electric field will tend to be concentrated in shells or double layers above and beneath the photosphere. A double layer exists above the solar photosphere, in the chromosphere.

5. The photosphere and chromosphere together act like a pnp transistor, modulating the current flow in the solar wind.* It has an effective negative feedback influence to steady the energy radiated by the photosphere so that astrophysicists can talk of a 'solar constant,' while the Sun''s other external electrical activity (UV light and x-rays) is much more variable. Because the photosphere is an electrical plasma discharge phenomenon it also expands or contracts to adjust to its electrical environment. That explains why the Sun 'rings' like an electric bell.

6. Double layers may break down with an explosive release of electrical energy. A nova outburst is a result of the breakdown of an internal stellar DL. Hannes Alfvén suggested that billions of volts could exist across a typical solar flare double layer.

7. A star is a resonant electrical load in a galactic circuit and naturally shows periodic behavior. Superimposed is the non-linear behavior of plasma discharges. Two stars close together can induce cataclysmic variability or pulsar behavior through such plasma discharges.

8. The correct model to apply to a star is that of a homopolar electric motor. It explains the puzzle of why the equator of the Sun rotates the fastest when it should be slowed by mass loss to the solar wind. (The same model applies to spiral galaxies and explains why outer stars orbit more rapidly than expected. The spiral arms of the galaxy and the spiral structure of the solar 'wind' then have an obvious connection).

9. The current that powers the Sun can be viewed as flowing in along the wavy polar magnetic field lines, then from the poles toward the equator. That current flow manifests as huge sub-photospheric flows of gas. In the mid-latitudes the circuit is completed as the current flows outward in a current sheet called incorrectly the solar 'wind.'

10. The transfer of charge to the solar wind takes place through the photosphere. It occurs in the form of a tightly packed global tornadic electrical discharge. The importance of the tornadic form for us is that it is slower than lightning, being under the tight control of powerful electromagnetic forces, and less bright than lightning. The intense, equally spaced solenoidal magnetic fields of the photospheric tornadoes gives rise to the surprisingly evenly spaced magnetic field lines of the Sun.


11. Encircling the Sun''s equator is a ring current forming a doughnut-shaped plasmoid. It is visible in UV light and is a source of stored electromagnetic energy. Occasionally the plasmoid discharges directly to lower levels of the Sun, punching a hole, that we call a sunspot, through the photosphere. A sunspot group can be compared to regional lightning on Earth. Scientists were surprised when they discovered 'awesome plasma hurricanes' just beneath a sunspot. Electric discharges in a plasma naturally drive such rotation. Sunspots of the same magnetic polarity are drawn toward each other, which is inexplicable if they are simply magnetic phenomena. However, two parallel electric current filaments following the magnetic field lines are naturally drawn together.

12. Sometimes the slow discharge that forms a sunspot may trigger a stellar lightning flash, resulting in a more sudden and powerful release of stored electrical energy. An x-ray flash is the signature of such lightning. That arc may result in a CME. The corona often dims as power is withdrawn from the solar plasmoid.

13. The conventional thermonuclear story of stellar evolution is incorrect so we do not know the age of the Sun, or its character in the past or future. The inexplicable and drastic global climate changes on Earth in the past may have found an answer at last in the variable nature of stars.

The Bottom Line

Our Sun, like all stars, is a variable star. We must learn to live with the uncertainty of a star that is a product of its environment. We can expect our Sun to change when it enters regions of interstellar space where there is more or less dust, which alters the plasma characteristics. In the meantime, we can only look for reassurance by closely examining the behavior of nearby stars. A few massive CME's are the least of our concerns.


* I am indebted to Professor Don Scott for this insight. He points out that the complete shutdown of the solar wind for two days in May 1999 is understandable with his transistor model. It is inexplicable on the thermonuclear model since there was no change in the Sun''s visible energy output that accompanied the phenomenon.


<center>---</center>

Update 25 November 2003:

Louis Lanzerotti, of the New Jersey Institute of Technology/Bell Labs, released the following startling report on November 14, 2003. It is a result of observations from the Ulysses spacecraft, which is orbiting over the poles of the Sun,

<font color="#bd934f">Data from Ulysses show that the solar wind originates in holes in the sun's corona, and the speed of the solar wind varies inversely with coronal temperature. "This was completely unexpected," said Lanzerotti. "Theorists had predicted the opposite. Now all models of the sun and the solar wind will have to explain this observation."</font>

I missed an opportunity. This finding could have been predicted from the electrical model of the Sun.

The standard model of the solar wind has it "boiling off" the Sun so that you would expect a direct correlation between coronal temperature and solar wind speed. That is precisely the opposite of what the Ulysses spacecraft saw.

In the electric model of the Sun, where the solar electric field is strong in the coronal holes, protons of the solar wind are being strongly accelerated away from the Sun. Their random motion becomes less significant in a process called de-thermalization. Outside the coronal holes, where the coronal electric field is weaker, the protons move more aimlessly. As a result they suffer more collisions and move more randomly. The degree of random movement of particles directly equates to temperature. So the solar wind is fastest where the corona appears coolest and the solar wind is slowest where the corona appears hottest — as Ulysses found.

- Wal Thornhill, THE SUN — Our Variable Star, 09 November 2003</blockquote>